Pitera, Kelly, Linda Ng Boyle, and Anne V. Goodchild. "Economic Analysis of Onboard Monitoring Systems in Commercial Vehicles." Transportation Research Record 2379, no. 1 (2013): 64-71.
Unresolved safety issues caused by truck parking shortages in high-demand locations are of keen importance to the State Departments of Transportation (DOTs) participating in the Regional PacTrans Center and to the thousands of trucking companies and drivers using the Interstate 5 (I-5) and Interstate 90 (I-90) corridors. Safety issues include serious and/or fatal crashes that may be related to the lack of safe and secure parking, and illegal/unofficial parking on entrance and exit ramps, shoulders, and freeway lanes that create hazards for motorists during severe weather.
Finally, SCTL conducted 184 interviews of truck drivers over a three-week time period at two high-demand truck stops on the I-5 and I-90 corridors to determine: (a) origin and destination of trips; (b) connection to the Ports of Seattle and Tacoma; (c) drivers’ perceptions of safety issues caused by a lack of truck parking; (d) types of commodities carried; and (e) why drivers parked at these rest stops.
The SCTL Center’s research provides new data and insights to answer questions under discussion between state, local, and regional transportation agencies and communities in the central Puget Sound region. The research results supported development of the Washington State Freight Mobility Plan. However the project’s findings have not resulted in public funding for additional parking in high-demand locations near I5 and I-90.
One of the most topical questions is whether the state’s economy and/or the Ports of Seattle and Tacoma benefit from the truck trips that require rest stops near the Seattle-Tacoma Bellevue metropolitan area. This question is central to understanding their proportional roles and funding responsibilities to add parking capacity where it is scarce: in the central Puget Sound region.
The research findings have been used to communicate the importance of providing truck parking in high-demand areas in Washington State, particularly near I-5 south of Seattle and along I-90 near North Bend, to local officials, WSDOT, and other state officials.
By an overwhelming margin, truck drivers who parked along I-5 and I90 near the Seattle-Tacoma-Bellevue metropolitan area delivered goods in Washington State, providing strong evidence that their activities support the state’s economy and residents.
The effective and efficient movement of freight is essential to the economic well-being of our country but freight transport also adversely impacts our society by contributing to a large number of crashes, including those resulting in injuries and fatalities. Technology has been used increasingly to facilitate safety and operational improvements within commercial vehicle operations, but motor carriers operate on small profit margins, limiting their ability to make large investments without also seeing an economic benefit from such technologies. This dissertation explores the economic implications associated with using onboard monitoring systems to enhance safety in commercial vehicle operations.
First, to better understand how electronic on-board systems work, paper-based methods of recording driver hours of service are compared to automated (or electronically recorded) hours of service for three motor carriers using process analysis. This analysis addressed the differences between manual (paper-based) and electronic methods of recording hours of service, specifically as they relate to the frequencies and magnitude of the errors. Potential errors are categorized by operations within an information-based process and the findings suggest that a reduction of errors can be achieved with an electronic system.
A benefit-cost analysis provides a better understanding of the economic implications of onboard monitoring systems from the perspective of the carrier. In addition to the benefits of reduced crashes, benefits associated with electronic recording of hours of service, reduced mileage, and reduced fuel costs are considered. A sensitivity analysis is used and demonstrates that on-board monitoring systems are economically viable under a wide range of conditions. Results indicate that, for some fleet types, reducing crashes and improving hours of service recording, provides a net benefit of close to $300,000 over the five-year expected lifespan of the system. Furthermore, when exploring additional benefits such as reduced fuel consumption and reduced vehicle miles, benefits can be upwards of seven times more than safety-related benefits. This research also shows that net positive benefits are possible in large and small-sized fleets. Results can be used to inform policies for motivating or mandating carriers to use such systems and to inform carriers regarding the value of system investment.
The outer coast of Washington State is exposed to significant seismic and tsunami hazards. A Cascadia Subduction Zone (CSZ) event is expected to cause high earthquake intensities and tsunami inundation resulting in considerable infrastructure loss, inundation of developed land, and degraded functioning of coastal communities.
One area of particular concern is Pacific County, located in southwest Washington, where over 85% of the population is expected to experience severe shaking intensities.
This paper establishes the pre-disaster passenger and freight transportation patterns and the damaged post-disaster road network in Pacific County. The hazard used in the analysis is the CSZ magnitude 9.1 earthquake and resulting tsunami. Passenger travel is compared to forestry travel along the following characteristics: overall change in travel distance, percentage of trips that are longer, the percentage of trips that are no longer possible, and the distributions of travel distance.
Because passenger and freight travel have different purposes and patterns, understanding how they are affected differently can serve as a foundation for community-based disaster recovery planning to increase community resilience to earthquakes and tsunamis.
The safety effects of cooperative intelligent transport systems (C-ITS) are mostly unknown and associated with uncertainties, because these systems represent emerging technology. This study proposes a bowtie analysis as a conceptual framework for evaluating the safety effect of cooperative intelligent transport systems. These seek to prevent road traffic accidents or mitigate their consequences. Under the assumption of the potential occurrence of a particular single-vehicle accident, three case studies demonstrate the application of the bowtie analysis approach in road traffic safety. The approach utilizes exemplary expert estimates and knowledge from literature on the probability of the occurrence of accident risk factors and of the success of safety measures. Fuzzy set theory is applied to handle uncertainty in expert knowledge. Based on this approach, a useful tool is developed to estimate the effects of safety-related cooperative intelligent transport systems in terms of the expected change in accident occurrence and consequence probability.