Skip to content
Report

The Final 50 Feet of the Urban Goods Delivery System: Tracking Curb Use in Seattle

 
Download PDF  (4.54 MB)
Publication Date: 2019
Summary:

Vehicles of all kinds compete for parking space along the curb in Seattle’s Greater Downtown area. The Seattle Department of Transportation (SDOT) manages use of the curb through several types of curb designations that regulate who can park in a space and for how long. To gain an evidence-based understanding of the current use and operational capacity of the curb for commercial vehicles (CVs), SDOT commissioned the Urban Freight Lab (UFL) at the University of Washington Supply Chain Transportation & Logistics Center to study and document curb parking in five selected Greater Downtown areas.

This study documents vehicle parking behavior in a three-by-three city block grid around each of five prototype Greater Downtown buildings: a hotel, a high-rise office building, an historical building, a retail center, and a residential tower. These buildings were part of the UFL’s earlier SDOT-sponsored research tracking how goods move vertically within a building in the final 50 feet.

The areas around these five prototype buildings were intentionally chosen for this curb study to deepen the city’s understanding of the Greater Downtown area.

Significantly, this study captures the parking behavior of commercial vehicles everywhere along the curb as well as the parking activities of all vehicles (including passenger vehicles) in commercial vehicle loading zones (CVLZs). The research team documented: (1) which types of vehicles parked in CVLZs and for how long, and; (2) how long commercial vehicles (CVs) parked in CVLZs, in metered parking, and in passenger load zones (PLZ) and other unauthorized spaces.

Four key findings, shown below, emerged from the research team’s work:

  1. Commercial and passenger vehicle drivers use CVLZs and PLZs fluidly: commercial vehicles are parking in PLZs, and passenger vehicles are parking in CVLZs. Passenger vehicles made up more than half of all vehicles observed parking in CVLZs (52%). More than one-quarter of commercial vehicle drivers parked in PLZs (26 %.) This fact supports more integrated planning for all curb space, versus developing standalone strategies for passenger vehicle and for commercial vehicle parking.
  2. Most commercial vehicle (CV) demand is for short-term parking: 15 or 30 minutes. Across the five locations, more than half (54%) of all CVs parked for 15 minutes or less in all types of curb spaces. Nearly three-quarters of all CVs (72%) parked for 30 minutes or less. When considering just the delivery CVs, an even higher percentage, 60%, parked for 15 minutes or less. Eighty-one percent of the delivery CVs parked for 30 minutes or less.
  3. Thirty-six percent of the total CVs parked along the curb were service CVs, showing the importance of factoring their behavior and future demand into urban parking schemes. In contrast to delivery CVs that predominately parked for 30 minutes or less, service CVs’ parking behavior was bifurcated. While 56% of them parked for 30 minutes or less, 44% parked for more than 30 minutes. And more than one quarter (27%) of the service CVs parked for an hour or more. Because service vehicles make up such a big share of total CVs at the curb, this may have an outsize impact on parking space turn rates at the curb.
  4. Forty-one percent of commercial vehicles parked in unauthorized locations. But a much higher percentage parked in unauthorized areas near the two retail centers (55% – 65%) when compared to the predominately office and residential areas (27% – 30%). The research team found that curb parking behavior is associated with granular, building-level urban land use. This occurred even as other factors such as the total number, length and ratio of CVLZs versus PLZs varied widely across the five study areas.

The occupancy study documents that each building and the built environment surrounding it has unique features that impact parking operations. As cities seek to more actively manage curb space, the study’s findings illuminate the need to plan a flexible network with capacity for distinct types (time and space requirements) of CV parking demand.

This study also drives home that the curb does not function in isolation, but instead forms one element of the Greater Downtown’s broader, interconnected load/unload network, which includes alleys, the curb, and private loading bays and docks. (1,2,3) SDOT commissioned this work as part of its broader effort with the UFL to map—and better understand—the entire Greater Downtown area’s commercial vehicle load/unload space network. Cities and other parties interested in the details of how to conduct a commercial vehicle occupancy study can see a step-by-step guide in Appendix C.

In this study, researchers deployed six data collectors to observe each curb study area for three days over roughly six weeks in October and December 2017. To make the data produced in this project as useful as possible, the research team designed a detailed vehicle typology to track specific vehicle categories consistently and accurately. The typology covers 10 separate vehicle categories, from various types of trucks and vans to passenger vehicles to cargo bikes. Passenger vehicles in this study were not treated as commercial vehicles, due to challenges in systematically identifying whether passenger vehicles were making deliveries or otherwise carrying a commercial permit.

The five prototype Seattle buildings studied are Seattle Municipal Tower (also the site of a common carrier parcel locker pilot), Dexter Horton, Westlake Center, and Insignia Towers. (4) The study shows how different building and land uses interact with the broader load/unload network. By collecting curb occupancy data in the same locations as their earlier work, the research team added a new layer of information to help the city evaluate—and manage—the Greater Downtown area load/unload network more comprehensively.

This report is part of a broader suite of UFL research to date that equips Seattle with an evidence-based foundation to actively and effectively manage Greater Downtown load/unload space as a coordinated network. The UFL has mapped the location and features of the legal landing spots for trucks across the Greater Downtown, enabling the city to model myriad urban freight scenarios on a block-by-block level. To the research team’s knowledge, no other city in the U.S. or the E.U. has this data trove. The findings in this report, together with all the UFL research conducted and GIS maps and databases produced to date, give Seattle a technical baseline to actively manage the Greater Downtown’s load/unload spaces as a coordinated network to improve the goods delivery system and mitigate gridlock.

The UFL will pilot such active management on select Greater Downtown streets in Seattle and Bellevue, Washington, to help goods delivery drivers find a place to park without circling the block in crowded cities for hours, wasting time and fuel and adding to congestion. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy under the Vehicles Technologies Office is funding the project. (5) The project partners will integrate sensor technologies, develop data platforms to process large data streams, and publish a prototype app to let delivery firms know when a parking space is open – and when it’s predicted to be open so they can plan to arrive when another truck is leaving. This is the nation’s first systematic research pilot to test proof of concept of a functioning system that offers commercial vehicle drivers and dispatchers real-time occupancy data on load/unload spaces–and test what impact that data has on commercial driver behavior. This pilot can help inform other cities interested in taking steps to actively manage their load/unload network.

Actively managing the load/unload network is more imperative as the city grows denser, the e-commerce boom continues, and drivers of all vehicle types—freight, service, passenger, ride-sharing and taxis—jockey for finite (and increasingly valuable) load/unload space. Already, Seattle ranks as the sixth most-congested city in the country.

The UFL is a living laboratory made up of retailers, truck freight carriers and parcel companies, technology companies supporting transportation and logistics, multifamily residential and retail/commercial building developers and operators, and SDOT. Current members are Boeing HorizonX, Building Owners and Managers Association (BOMA) – Seattle King County, curbFlow, Expeditors International of Washington, Ford Motor Company, General Motors, Kroger, Michelin, Nordstrom, PepsiCo, Terreno, USPack, UPS, and the United States Postal Service (USPS).

Recommended Citation:
Urban Freight Lab (2019). The Final 50 Feet of the Urban Goods Delivery System: Tracking Curb Use in Seattle.
Technical Report

Development and Analysis of a GIS-Based Statewide Freight Data Flow Network

 
Download PDF  (4.92 MB)
Publication: Washington State Department of Transportation
Publication Date: 2009
Summary:
In the face of many risks of disruptions to our transportation system, this research improves WSDOT’s ability to manage the freight transportation system so that it minimizes the economic consequences of transportation disruptions.
Faced with a high probability that major disruptions to the transportation system will
harm the state’s economy, the Washington State Department of Transportation
(WSDOT), in partnership with Transportation Northwest (TransNow) commissioned
researchers at the University of Washington and Washington State University to
undertake freight resiliency research to:
  • Understand how disruptions of the state’s freight corridors change the way
    trucking companies and various freight-dependent industries route goods,
  • Plan to protect freight-dependent sectors that are at high risk from these disruptive
    events, and
  • Prioritize future transportation investments based on the risk of economic loss to
    the state
To accurately predict how companies will route shipments during a disruption,
this research developed the first statewide multimodal freight model for Washington
State. The model is a GIS-based portrayal of the state’s freight highway, arterial, rail,
waterway and intermodal network and can help the state prioritize strategies that protect industries most vulnerable to disruptions.
The report features two case studies showing the model’s capabilities: the potato growing and processing industry was chosen as a representative agricultural sector, and diesel fuel distribution for its importance to all industry sectors. The case studies are found in sections 5.2 and 5.3 in the report and show how the statewide freight model can:
  • Predict how shipments will be re-routed during disruptions, and
  • Analyze the level of resiliency in various industry sectors in Washington State
The two case studies document the fragility of the state’s potato growing and processing
sectors and its dependence on the I-90 corridor, while showing how the state’s diesel
delivery system is highly resilient and isn’t linked to I-90.
As origin-destination data for other freight-dependent sectors is added to the model,
WSDOT will be able to evaluate the impact of freight system disruptions on each of
them. This will improve WSDOT’s ability to develop optimal strategies for highway
closures, and prioritize improvements to the system based on the relative impact of the
disruption.
This research addressed several technical areas that would need to be resolved by any
organization building a state freight model. First, the researchers had to decide on the
level of spatial and temporal detail to include in the statewide GIS freight model. This
decision has significant consequences for data resolution requirements and results.
Including every road in Washington would have created a cumbersome model with a
large number of links that weren’t used. However, in order to analyze routing during a
disruption all possible connections must exist between origin and destination points in the model. While the team initially included only the core freight network in the model,
ultimately all road links were added to create complete network connectivity.
Second, as state- and corridor-level commodity flow data is practically non-existent, data
collection for the two case studies was resource intensive. Supply chain data is held by
various stakeholders and typically not listed on public websites, and it isn’t organized by
those stakeholders for use in a freight model. In most cases it’s difficult to assure data
quality. The team learned that the most difficult data to obtain is data on spatially or
temporally variable attributes, such as truck location and volume. So they developed a
method to estimate the importance of transportation links without commodity flow data.

Third, the freight model identified the shortest route, based on travel time, between any
origin and destination (O/D) pair in the state, and the shortest travel-time re-route for
each O/D pair after a disruption. The routing logic in the model is based on accepted
algorithms used by Google Maps and MapQuest. Phase III of the state’s freight
resiliency research was funded by WSDOT and will result in improved truck freight
routing logic for the model in 2011.
The two case studies showed how the state’s supply chains use infrastructure differently,
and that some supply chains have built flexibility into their operations and are resilient
while others are not, which leads to very different economic consequences. The results
of these case studies significantly contributed to WSDOT’s understanding of goods
movement and vulnerability to disruptions.
In the future, Washington State will need corridor-level commodity flow data to
implement the research findings and complete the state freight model. In 2009, the
National Cooperative Freight Research Program (NCFRP) funded development of new
methodology to collect and analyze sub-national commodity flow information. This
NCFRP project, funded at $500,000, will be completed in 2010 and provide a mechanism for states to accurately account for corridor-level commodity flows. If funds are available to implement the new methodology in Washington State, the state’s freight
model will use the information to map these existing origin destination commodity flows
onto the freight network, evaluate the number of re-routed commercial vehicles, and their increased reroute distance from any disruption. This will allow WSDOT to develop
prioritized plans for supply chain disruptions, and recommend improvements to the
system based on the economic impact of the disruption.
This report summarizes 1) the results from a thorough review of resilience literature and resilience practices within enterprises and organizations, 2) the development of a GIS-based statewide freight transportation network model, 3) the collection of detailed data regarding two important industries in Washington state, the distribution of potatoes and diesel fuel, and 4) analysis of the response of these industries to specific disruptions to the state transportation network.
The report also includes recommendations for improvements and additions to the GIS model that will further the state’s goals of understanding the relationship between infrastructure availability and economic activity, as well as recommendations for improvements to the statewide freight transportation model so that it can capture additional system complexity.
Authors: Dr. Anne GoodchildDr. Ed McCormack, Eric Jessup, Derik Andreoli, Kelly Pitera, Sunny Rose, Chilan Ta
Recommended Citation:
Goodchild, Anne V., Eric L. Jessup, Edward D. McCormack, Derik Andreoli, S Rose, Chilan Ta and Kelly Pitera. “Development and Analysis of a GIS-Based Statewide Freight Data Flow Network.” (2009).
Report

Seattle Center City: Alley Infrastructure Inventory and Occupancy Study

 
Download PDF  (2.84 MB)
Publication Date: 2018
Summary:

The Supply Chain and Transportation Logistics (SCTL) Center conducted an alley inventory and truck load/unload occupancy study for the City of Seattle. Researchers collected data identifying the locations and infrastructure characteristics of alleys within Seattle’s One Center City planning area, which includes the downtown, uptown, South Lake Union, Capitol Hill, and First Hill urban centers. The resulting alley database includes GIS coordinates for both ends of each alley, geometric and traffic attributes, and photos. Researchers also observed all truck load/unload activity in selected alleys to determine minutes vacant and minutes occupied by trucks, vans, passenger vehicles, and cargo bikes. The researchers then developed alley management recommendations to promote safe, sustainable, and efficient goods delivery and pick-up.

Key Findings:

The first key finding of this study is that more than 90% of Center City alleys are only one lane wide. This surprising fact creates an upper limit on alley parking capacity, as each alley can functionally hold only one or two vehicles at a time. Because there is no room to pass by, when a truck, van, or car parks it blocks all other vehicles from using the alley. When commercial vehicle drivers see that an alley is blocked they will not enter it, as their only way out would be to back up into street traffic. Seattle Municipal Code prohibits this, as well as backing up into an alley, for safety reasons.

When informed by the second key finding—68% of vehicles in the alley occupancy study parked there for 15 minutes or less—it is clear that moving vehicles through alleys in short time increments is the only reasonable path to increase productivity. As one parked vehicle operationally blocks the entire alley, the goal of new alley policies and strategies should be to reduce the amount of time alleys are blocked to additional users.

The study surfaces four additional key findings:

  1. 87% of all vehicles in the 7 alleys studied parked for 30 minutes or less. Given the imperative to move alley traffic quickly, vehicles that need more parking time must be moved out of the alleys and onto the curb where they don’t block others.
  2. 15% of alleys’ pavement condition is so poor that delivery workers can’t pass through with loaded hand carts.  Although trucks can drive over fairly uneven pavement without difficulty, it is not the case for delivery people walking with fully loaded handcarts.  The alley pavement rating was done with a qualitative visual inspection to identify obvious problems; more detailed measurements would be needed to fully assess conditions.
  3. 73% of Center City area alleys contain entrances to passenger parking facilities. Placing garage entrances in alleys has been a city policy goal for years. But it increases the frequency of cars in alleys and adds demands on alley use. Understanding why cars are queuing for passenger garages located off alleys, and providing incentives and disincentives to reduce that, would help make alleys more productive.
  4. Alleys are vacant about half of the time during the business day. While at first blush this suggests ample capacity, the fact that an alley can only hold one-to-two parked trucks at a time means alleys are limited operationally and therefore are not a viable alternative to replace the use of curb CVLZs on city streets.

These findings indicate that, due to the fixed alley width constraint, load/unload space inside Seattle’s existing Center City area alleys is insufficient to meet additional future demand.

Recommended Citation:
Urban Freight Lab (2018). Seattle Center City: Alley Infrastructure Inventory and Occupancy Study.