Skip to content
Paper

How Cargo Cycle Drivers Use the Urban Transport Infrastructure

 
Download PDF  (10.47 MB)
Publication: Transportation Research Part A: Policy and Practice
Volume: 167
Publication Date: 2023
Summary:

Electric cargo cycles are often considered a viable alternative mode for delivering goods in an urban area. However, cities in the U.S. are struggling to regulate cargo cycles, with most authorities applying the same rules used for motorized vehicles or traditional bikes. One reason is the lack of understanding of the relationships between existing regulations, transport infrastructure, and cargo cycle parking and driving behaviors.

In this study, we analyzed a cargo cycle pilot test in Seattle and collected detailed data on the types of infrastructure used for driving and parking. GPS data were augmented by installing a video camera on the cargo cycle and recording the types of infrastructure used (distinguishing between the travel lane, bicycle lane, and sidewalk), the time spent on each type, and the activity performed.

The analysis created a first-of-its-kind, detailed profile of the parking and driving behaviors of a cargo cycle driver. We observed a strong preference for parking (80 percent of the time) and driving (37 percent of the time) on the sidewalk. We also observed that cargo cycle parking was generally short (about 4 min), and the driver parked very close to the delivery address (30 m on average) and made only one delivery. Using a random utility model, we identified the infrastructure design parameters that would incentivize drivers to not use the sidewalk and to drive more on travel and bicycle lanes.

The results from this study can be used to better plan for a future in which cargo cycles are used to make deliveries in urban areas.

Recommended Citation:
Dalla Chiara, G., Donnelly, G., Gunes, S., & Goodchild, A. (2023). How Cargo Cycle Drivers Use the Urban Transport Infrastructure. Transportation Research Part A: Policy and Practice, 167, 103562. https://doi.org/10.1016/j.tra.2022.103562
Report

Understanding and Mitigating Freight-Related Impacts from the West Seattle Bridge Closure

 
Download PDF  (2.31 MB)
Publication Date: 2022
Summary:

West Seattle (WS) is a part of the city of Seattle, Washington, but is located on a peninsula west of the Duwamish River. The West Seattle High-Rise Bridge serves as the primary connector between West Seattle and the rest of the city, carrying some 84,000 vehicles on average each day. On March 23, 2020, that high bridge was suddenly closed to all vehicle traffic for safety reasons due to greater-than-expected structural deterioration. The high bridge is now being repaired with a reopening planned for 2022. With the closure, vehicles have needed to take alternative routes to and from the peninsula, including the 1st Avenue South Bridge and the South Park Bridge, located some 2.1 and 3.4 miles south of the high bridge (see Figure 1). After the closure, the number of available vehicle traffic lanes across the river dropped from 21 to 12, with eight lanes on the 1st Avenue South Bridge and four on the South Park Bridge [2]. Before the closure, drivers also used the two-lane Spokane Street Low Bridge under the high bridge to access West Seattle. But after the closure, low bridge use was initially (as of March 2021) restricted from 5:00 am to 9:00 pm to authorized vehicles only, including emergency vehicles, public transit, and 10,000+ pound gross weight freight vehicles.

The unexpected high bridge closure disrupted passenger and freight mobility to and from WS, increasing travel times and creating bottlenecks on the remaining bridges. This has had negative impacts on the peninsula’s economy, as well as its livability. Concerns also persist regarding the environmental and health impacts of traffic detours into Duwamish Valley neighborhoods that are already disproportionately impacted by air pollution and asthma [4]. As traffic demand increases with the gradual recovery from the COVID-19 pandemic, the negative impacts could worsen. Notably, the timing of the high bridge closure coincided with the start of the pandemic and the resulting economic shutdowns and slowdowns that continue as of this writing. As such, it is difficult at times in this report to entirely disentangle the broader effects of the pandemic from the more specific effects of the bridge closure. This challenge surfaces especially in our interviews with study area businesses and with carriers performing deliveries and pick-ups in the study area: They report definite impacts, but it is not always clear how much of the impact stems from the bridge closure alone versus the bridge closure on top of the pandemic’s myriad ripple effects. That said, this study seeks to:

  • Document the impacts of the high bridge closure on freight flow, businesses, and carriers.
  • Understand current freight movements and quantify freight demand.
  • Identify mitigation strategies for freight flow to/from WS, both during the bridge closure and beyond.
Recommended Citation:
Urban Freight Lab (2022). Understanding and Mitigating Freight-Related Impacts from the West Seattle Bridge Closure.
Student Thesis and Dissertations

Ridehail and Commercial Vehicles Access in Urban Areas: Implications for Public Infrastructure Management

 
Download PDF  (2.99 MB)
Publication Date: 2022
Summary:

As urbanized populations and concentrations of activities increase, there is growing pressure in dense and constrained urban areas to unlock the potential of every public infrastructure element to address the increasing demand for public space. Specifically, there is a growing demand for space for parking operations related to the access to land use by people and goods. On one side, ridehailing services, such as those provided by Uber and Lyft, are on the rise and with them the associated passenger pick-up/drop-off (PUDOs) operations. On the other side, freight and servicing trips require a supply of adequate infrastructure to support vehicle access and load/unload activities and final delivery/service to customers. This dissertation aims to provide insights based on real-world datasets and tests to support the management of two key public infrastructure that provides access to land uses: alleys and curb lanes. To achieve this goal, first, this dissertation will investigate what roles alleys play in cities and inspect alleys’ physical characteristics and vehicle parking operations in these spaces. Secondly, this research will examine factors of PUDO dwell time and evaluate the impact of adding curb lane PUDO zones and geofencing ridehailing vehicles to these zones using a hazard-based duration modeling approach. Finally, this dissertation will analyze the impact of different ridehailing curb management strategies on curb lane utilization based on simulation.

Recommended Citation:
León, J., Luis Machado. (2022). Ridehail and Commercial Vehicles Access in Urban Areas: Implications for Public Infrastructure Management (Order No. 10827973). University of Washington Doctoral Dissertation.
Report

The Final 50 Feet of the Urban Goods Delivery System: Completing Seattle’s Greater Downtown Inventory of Private Loading & Unloading Infrastructure (Phase 2)

 
Download PDF  (2.35 MB)
Publication Date: 2020
Summary:

This report describes the Urban Freight Lab (UFL) work to map the locations of all private loading docks, loading bays, and loading areas for commercial vehicles in Seattle’s First Hill and Capitol Hill neighborhoods and document their key design and capacity features, as part of our Final 50 Feet Research Program.

Taken together with the UFL’s earlier private freight infrastructure inventory in Downtown Seattle, Uptown, and South Lake Union, this report finalizes the creation of a comprehensive Greater Downtown inventory of private loading/unloading infrastructure. The Seattle Department of Transportation (SDOT) commissioned this work as part of its broader effort with UFL to GIS map the entire Greater Downtown commercial load/unload network, which includes alleys, curbs and private infrastructure.

The research team could find no published information on any major U.S. or European city that maintains a database with the location and features of private loading/unloading infrastructure (meaning, out of the public right of way): Seattle is the first city to do so.

By supporting and investing in this work, SDOT demonstrates that it is taking a high-level conceptual view of the entire load/unload network. The city will now have a solid baseline of information to move forward on myriad policy decisions. This commitment to creating a private load/unload infrastructure inventory is significant because infrastructure is often identified as an essential element in making urban freight delivery more efficient. But because these facilities are privately owned and managed, policymakers and stakeholders lack information about them—information critical to urban planning. By and large, this private infrastructure has been a missing piece of the urban freight management puzzle. The work represented in this section fills a critical knowledge gap that can help advance efforts to make urban freight delivery more efficient in increasingly dense, constrained cities, like Seattle.

Without having accurate, up-to-date information on the full load/unload network infrastructure—including the private infrastructure addressed here—cities face challenges in devising effective strategies to minimize issues that hamper urban freight delivery efficiency, such as illegal parking and congestion. Research has shown that these issues are directly related to infrastructure (specifically, a lack thereof). (4) A consultant report for the New York Department of Transportation found that the limited data on private parking facilities for freight precluded development of solutions that reduce double parking, congestion and other pertinent last-mile freight challenges. (5) The report also found that the city’s off-street loading zone policy remained virtually unchanged for 65 years (despite major changes like the advent and boom of e-commerce.)

Local authorities often rely heavily on outside consultants to address urban freight transport issues because these authorities generally lack in-house capacity on urban freight. (6) Cities can use the replicable data-collection method developed here to build (and maintain) their own database of private loading/unloading infrastructure, thereby bolstering their in-house knowledge and planning capacity. Appendix C includes a Step-by-Step Toolkit for a Private Load/Unload Space Inventory that cities, researchers, and other parties can freely use.

The method in that toolkit builds—and improves—on the prior data-collection method UFL used to inventory private infrastructure in the dense urban neighborhoods of Downtown Seattle, Uptown and South Lake Union in early 2017 (Phase 1). The innovative, low-cost method ensures standardized, ground-truthed, high-quality data and is practical to carry out as it does not require prior permission and lengthy approval times to complete.

This inventory report’s two key findings are:

  1. Data collectors in this study identified, examined, and collected key data on 92 private loading docks, bays and areas across 421 city blocks in the neighborhoods of Capitol Hill, First Hill, and a small segment of the International District east of I-5. By contrast, the early 2017 inventory in Downtown Seattle, Uptown, and South Lake Union identified 246 private docks, bays and areas over 523 blocks—proportionally more than twice the density of private infrastructure of Capitol Hill and First Hill. This finding is not surprising. While all the inventoried neighborhoods are in the broad Greater Downtown, they are fundamentally different neighborhoods with different built environments, land use, and density. Variable demand for private infrastructure—and the resulting supply—stems from those differences.
  2. A trust relationship with the private sector is essential to reduce uncertainty in this type of work. UFL members added immense value by ground-truthing this work and playing an active role in improving inventory results. When data collectors in the field found potential freight loading bays with closed doors (preventing them from assessing whether the locations were, in fact, used for freight deliveries), UPS had their local drivers review the closed-door locations as part of their work in the Urban Freight Lab. The UPS review allowed the researchers to rule out 186 of the closed-door locations across this and the earlier 2017 data collection, reducing uncertainty in the total inventory from 33% to less than 1%.

This report is part of a broader suite of UFL research to date that equips Seattle with an evidence-based foundation to actively and effectively manage Greater Downtown load/unload space as a coordinated network. The UFL has mapped the location and features of the legal landing spots for trucks across the Greater Downtown, enabling the city to model myriad urban freight scenarios on a block-by-block level. To the research team’s knowledge, no other city in the U.S. or the E.U. has this data trove. The findings in this report, together with all the UFL research conducted and GIS maps and databases produced to date, give Seattle a technical baseline to actively manage the Greater Downtown’s load/unload network to improve the goods delivery system and mitigate gridlock.

The UFL will pilot such active management on select Greater Downtown streets in Seattle and Bellevue, Washington, to help goods delivery drivers find a place to park without circling the block in crowded cities for hours, wasting time and fuel and adding to congestion. (7) One of the pilot’s goals is to add more parking capacity by using private infrastructure more efficiently, such as by inviting building managers in the test area to offer off-peak load/unload space to outside users. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy under the Vehicles Technologies Office is funding the project.

The project partners will integrate sensor technologies, develop data platforms to process large data streams, and publish a prototype app to let delivery firms know when a parking space is open – and when it’s predicted to be open so they can plan to arrive when another truck is leaving. This is the nation’s first systematic research pilot to test proof of concept of a functioning system that offers commercial vehicle drivers and dispatchers real-time occupancy data on load/unload spaces–and test what impact that data has on commercial driver behavior. This pilot can help inform other cities interested in taking steps to actively manage their load/unload network.

Actively managing the load/unload network is more imperative as the city grows denser, the e-commerce boom continues, and drivers of all vehicle types—freight, service, passenger, ride-sharing and taxis—jockey for finite (and increasingly valuable) load/unload space. Already, Seattle ranks as the sixth most-congested city in the country.

Recommended Citation:
Urban Freight Lab (2020). The Final 50 Feet of the Urban Goods Delivery System: Phase 2, Completing Seattle’s Greater Downtown Inventory of Private Loading/Unloading Infrastructure.