Skip to content

Shipping Resilience: Strategic Planning for Coastal Community Resilience to Marine Transportation Risk

A catastrophic earthquake could disrupt marine transportation across coastal British Columbia, severely affecting supply chains to coastal communities and emergency response capabilities. This project seeks to better understand such risks and develop effective resilience strategies for different types of coastal communities. It inquires into how disaster events would likely affect ports, marine transportation routes, and the associated movement of people and resources in the emergency response phase, and what strategies would be effective to alleviate potential consequences.

Co-principal investigators on this project are David Bristow at the University of Victoria (infrastructure systems modeling), Ron Pelot and Floris Goerlandt at Dalhousie University (shipping risk), C. Lin and L. Zhou at the University of Victoria (port geotech and structural modeling), and Anne Goodchild at the University of Washington (shipping logistics).

This project aims to improve understanding of how coastal marine transportation systems would be disrupted in natural hazard events, how such disruption would impact coastal communities, and what strategies could effectively address this risk. Focusing on the movement of people and goods in the emergency response phase of a disaster, the study develops new tools, information, and risk assessments to support preparedness planning by local and provincial governments and the transportation sector. The research delivers: (1) workshops for engaging government and transport sector stakeholders; (2) a framework for assessing coastal community resilience to shipping disruption; (3) a simulation tool based on this framework; and (4) specific findings and recommendations for two case studies – a detailed analysis of catastrophic earthquake risk in British Columbia and exploratory analysis of hurricane risk in Atlantic Canada.

Shipping Resilience: Strategic Planning for Coastal Community Resilience to Marine Transportation Risk (SIREN)

Many coastal communities across Canada are highly dependent upon maritime transportation systems that are vulnerable in natural disasters. This project aims to improve understanding of how coastal maritime transportation systems would be disrupted in natural hazard events, how such disruption would impact coastal communities, and what strategies could effectively address this risk.

Ports across Canada are vulnerable in natural disasters, and their disruption can pose severe consequences for marine transportation systems and the coastal communities that rely on them. This project aims to improve understanding of how different types of ports may be affected in hazard events, with focus on catastrophic earthquake risk in coastal British Columbia, and consideration of severe hurricane damage to ports in Eastern Canada.

Focusing on the movement of people and goods in the emergency response phase of a disaster, the research team develops new tools, information, and risk assessments to support preparedness planning by local and provincial governments and the transportation sector. Through iterative engagement with stakeholders, the research is also intended to foster dialogue and shared understandings of risk that are necessary for resilience planning.

The research consists of an interrelated set of activities:

  • Organization of workshops for engaging government and transport sector stakeholders.
  • Development of a framework for assessing community resilience to shipping and port disruption.
  • Development of a model and simulation tool for the coastal maritime transportation system and regional multimodal logistics system.
  • Development of a simulation model for port operations and vulnerabilities to natural hazards.
  • Development of an approach for evaluating the effectiveness of the modelling approach.

Research questions:

  1. How would a major disaster likely affect marine transportation routes?
  2. How would this marine transportation disruption affect the movement of people and resources in the emergency response phase?
  3. What strategies (e.g., alternate routes and/or transport modes) would be effective for different types of communities in alleviating the potential consequences?
  4. Will a port be available, and in what state, after a natural hazard event, considering its own vulnerability and the vulnerability of interdependent infrastructure (e.g., road access, electric power)?
  5. Based on expected states, what ports could be used for ingress and egress of populations and resources during the immediate and sustained response phases of a catastrophic disaster?
  6. What strategies would be effective for different types of ports to reduce failure risk or improve functional resilience?
Paper

A Meta-Heuristic Solution Approach to Isolated Evacuation Problems

 
Download PDF  (0.40 MB)
Publication: IEEE (Institute of Electrical and Electronics Engineers)
Volume: 2022 Winter Simulation Conference (WSC) INFORMS
Publication Date: 2022
Summary:

This paper provides an approximation method for the optimization of isolated evacuation operations, modeled through the recently introduced Isolated Community Evacuation Problem (ICEP). This routing model optimizes the planning for evacuations of isolated areas, such as islands, mountain valleys, or locations cut off through hostile military action or other hazards that are not accessible by road and require evacuation by a coordinated set of special equipment. Due to its routing structure, the ICEP is NP-complete and does not scale well. The urgent need for decisions during emergencies requires evacuation models to be solved quickly. Therefore, this paper investigates solving this problem using a Biased Random-Key Genetic Algorithm. The paper presents a new decoder specific to the ICEP, that allows to translate in between an instance of the S-ICEP and the BRKGA. This method approximates the global optimum and is suitable for parallel processing. The method is validated through computational experiments.

Authors: Dr. Anne GoodchildFiete Krutein, Linda Ng Boyle (University of Washington Dept. of Industrial & Systems Engineering)
Recommended Citation:
K. F. Krutein, L. N. Boyle and A. Goodchild, "A Meta-Heuristic Solution Approach to Isolated Evacuation Problems," 2022 Winter Simulation Conference (WSC), Singapore, 2022, pp. 2002-2012, doi: 10.1109/WSC57314.2022.10015470.
Paper

Effect of Tsunami Damage on Passenger and Forestry Transportation in Pacific County Washington

 
Download PDF  (1.36 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: 2604 (1)
Pages: 88-94
Publication Date: 2017
Summary:

The outer coast of Washington State is exposed to significant seismic and tsunami hazards. A Cascadia Subduction Zone (CSZ) event is expected to cause high earthquake intensities and tsunami inundation resulting in considerable infrastructure loss, inundation of developed land, and degraded functioning of coastal communities.

One area of particular concern is Pacific County, located in southwest Washington, where over 85% of the population is expected to experience severe shaking intensities.

This paper establishes the pre-disaster passenger and freight transportation patterns and the damaged post-disaster road network in Pacific County. The hazard used in the analysis is the CSZ magnitude 9.1 earthquake and resulting tsunami. Passenger travel is compared to forestry travel along the following characteristics: overall change in travel distance, percentage of trips that are longer, the percentage of trips that are no longer possible, and the distributions of travel distance.

Because passenger and freight travel have different purposes and patterns, understanding how they are affected differently can serve as a foundation for community-based disaster recovery planning to increase community resilience to earthquakes and tsunamis.

Authors: Dr. Anne Goodchild, Maura Rowell
Recommended Citation:
Rowell, Maura, and Anne Goodchild. "Effect of Tsunami Damage on Passenger and Forestry Transportation in Pacific County, Washington." Transportation Research Record 2604, no. 1 (2017): 88-94.