Skip to content
Blog

The Future of Delivery: Urban Freight in 2030

Publication: Goods Movement 2030: An Urban Freight Blog
Publication Date: 2023
Summary:

We have digitization to thank for today’s urban freight landscape. Digitization has long been the backbone of things we now take for granted — from TNCs (Transportation Network Companies) Uber and Lyft to online shopping and the complex supply chain needed to make that ecommerce happen. Digitization is what gives ecommerce’s biggest player — Amazon — visibility into its packages and enables it to deliver faster and more reliably than ever. So digitalization isn’t new. But it continues to spur new developments.

But what does digitization even mean in urban freight?

In this blog, we think about three buckets under the broad umbrella. Though all three can — and do — interconnect, the first two center on the public sector and the third on the private sector.

Recommended Citation:
"The Future of Delivery: Urban Freight in 2030" Goods Movement 2030 (blog). Urban Freight Lab, January 27, 2023. https://www.goodsmovement2030.com/post/the-future-of-delivery-urban-freight-in-2030.
Article

More Online Shopping Means More Delivery Trucks. Are Cities Ready?

 
Download PDF  (2.46 MB)
Publication: The Conversation
Publication Date: 2016
Summary:

Two converging trends — the rise of e-commerce and urban population growth — are creating big challenges for cities. Online shoppers are learning to expect the urban freight delivery system to bring them whatever they want, wherever they want it, within one to two hours. That’s especially true during the holidays, as shipping companies hustle to deliver gift orders on time.

City managers and policymakers were already grappling with high demand and competing uses for scarce road, curb, and sidewalk space. If cities do not act quickly to revamp the way they manage increasing numbers of commercial vehicles unloading goods in streets and alleys and into buildings, they will drown in a sea of double-parked trucks.

The University of Washington has formed a new Urban Freight Lab to solve delivery system problems that cities and the business sector cannot handle on their own. Funders of this long-term strategic research partnership include the City of Seattle Department of Transportation (SDOT) and five founding corporate members: Costco, FedEx, Nordstrom, UPS, and the U.S. Postal Service.

The core problem facing cities is that they are trying to manage their part of a sophisticated data-powered 21st-century delivery system with tools designed for the 1800s — and they are often trying to do it alone. Consumers can order groceries, clothes, and electronics with a click, but most cities only have a stripe of colored paint to manage truck parking at the curb. The Urban Freight Lab brings building managers, retailers, logistics and tech firms, and city government together to do applied research and develop advanced solutions.

Moving more goods, more quickly

We have reached the point where millions of people who live and work in cities purchase more than half of their goods online. This trend is putting tremendous pressure on local governments to rethink how they manage street curb parking and alley operations for trucks and other delivery vehicles. It also forces building operators to plan for the influx of online goods. A few years ago, building concierges may have received a few flower bouquets. Now many are sorting and storing groceries and other goods for hundreds of residents every week.

In the first quarter of 2016, almost 8 percent of total U.S. retail sales took place online. Surging growth in U.S. online sales has averaged more than 15 percent year-over-year since 2010. Black Friday web sales soared by 22 percent from 2015 to 2016.

Online shoppers’ expectations for service are also rising. Two out of three shoppers expect to be able to place an order as late as 5:00 p.m. for next-day delivery. Three out of five believe orders placed by noon should be delivered the same day, and one out of four believe orders placed by 4:00 p.m. or later should still be delivered on the same day.

City living and shopping is still all about location, location, location. People are attracted to urban neighborhoods because they prefer to walk more and drive less. Respondents in the 2015 National Multifamily Housing Council-Kingsley Apartment Resident Preferences Survey preferred walking to grocery stores and restaurants rather than driving by seven points. But this lifestyle requires merchants to deliver goods to customers’ homes, office buildings or stores close to where they live.

Smarter delivery systems

SDOT recently published Seattle’s first draft Freight Master Plan, which includes high-level strategies to improve the urban goods delivery system. But before city managers act, they need evidence to prove which concepts will deliver results.

To lay the groundwork for our research, an SCTL team led by Dr. Ed McCormack and graduate students Jose Machado Leon and Gabriela Giron surveyed 523 blocks of Seattle’s downtown (including Belltown, the commercial core, Pioneer Square and International District), South Lake Union and Uptown urban centers in the fall of 2016. They compiled GIS coordinates and infrastructure characteristics for all observable freight loading bays within buildings. Our next step is to combine this information with existing GIS layers of the city’s curbside commercial vehicle load zones and alleys to produce a complete map of Seattle’s urban delivery infrastructure.

In our first research project, the Urban Freight Lab is using data-based process improvement tools to purposefully manage both public and private operations of the Final-50-Feet space. The final 50 feet of the urban delivery system begins when a truck stops at a city-owned curb, commercial vehicle load zone or alley. It extends along sidewalks and through privately owned building freight bays, and may end in common areas within a building, such as the lobby.

One key issue is failed deliveries: Some city residents don’t receive their parcels due to theft or because they weren’t home to accept them. Could there be secure, common drop-off points for multiple carriers to use, attached to bus stops or on the sidewalk?

The most pressing issue is the lack of space for trucks to park and deliver goods downtown. It may be possible to use technology to get more use out of existing commercial vehicle load zones. For example, trucks might be able to use spaces now reserved exclusively for other uses during off-peak hours or seasons.

To analyze the fundamental problems in the urban logistics system, our research team will create process flow maps of each step in the goods delivery process for five buildings in Seattle. We will collect data and build a model to analyze “what if” scenarios for one location. Then we will pilot test several promising low-cost, high-value actions on Seattle streets in the fall of 2017. The pilots may involve actively managing city load zones and alleys to maximize truck use, or changing the way people use freight elevators.

By using information technologies and creative planning, we can make receiving online goods as efficient as ordering them — without clogging our streets or losing our packages.

Recommended Citation:
Goodchild, A., & Ivanov, B. (2016, December 20). More online shopping means more delivery trucks. Are cities ready? The Conversation. https://theconversation.com/more-online-shopping-means-more-delivery-trucks-are-cities-ready-67686.
Article

Where’s My Package? Common Carrier Freight Lockers Can Ease City Traffic and Prevent Failed Deliveries

Publication: The Conversation
Publication Date: 2018
Summary:

Online shopping is a big convenience for many Americans, but porch piracy can ruin the experience. For example, Mikaela Gilbert lived in a row house in West Philadelphia while she studied systems engineering at the University of Pennsylvania. By her junior year, Gilbert had lost enough packages to thieves that she devised an elaborate three-pronged security strategy.

Her first line of defense was having online purchases shipped to a friend who lived in a high-rise apartment where a doorman secured incoming packages. She also sent orders to her parents’ house in New Jersey when she had a visit home planned. But both of those options were hugely inconvenient, so sometimes she routed deliveries to her place after texting her seven housemates to be on the lookout.

When Amazon installed branded delivery lockers near the center of campus, Gilbert began receiving packages there, which was less stressful than managing a small army of collaborators. But it limited her shopping to just one retailer. When Amazon didn’t have something she wanted, she had to fall back on her circle of friends.

Retailers delivering to a customers’ homes also want to avoid these situations. Research at our lab has identified a promising alternative: publicly accessible common carrier freight lockers where all retailers can leave packages for pickup.

So many stops, so little time
Like Amazon’s branded lockers, common carrier lockers are automated, self-service storage units that provide a secure location for customers to receive online purchases. However, any retailer or delivery firm can access them. Some private buildings have such lockers now, but those are only open to residents. Our study examined the effectiveness of locating them in public spaces in dense urban areas, where they can be available to everyone.

The University of Washington’s Urban Freight Lab is a structured research work group composed of leading retail, logistics and delivery firms. We partner with the Seattle Department of Transportation, collect and analyze data, and run pilot tests of promising solutions in Seattle’s Center City area. Our focus is on solving urban delivery issues in an age when e-commerce is exploding, city populations are expanding, and gridlock is reaching epic levels.

In its first report, published in early 2018, the Lab analyzed the “Final 50 Feet” of the urban goods delivery system – the last leg of the supply chain. It begins when trucks pull into a parking space and stop moving, whether at the curb, in an alley, or at a building’s loading dock or internal freight bay. From there, it follows delivery people inside urban towers, ending where customers receive their packages.

Researchers discovered two especially thorny challenges in this segment of the chain: extended “dwell time,” when trucks are parked in load/unload spaces too long, and failed first delivery attempts due to causes that include porch piracy. Solving these puzzles could reduce delivery costs, traffic congestion and crime rates, and improve online shoppers’ experiences.

Delivering packages one at a time to individual homes or offices is time-consuming and requires driving to multiple locations and parking in multiple spaces. It also results in failed first delivery rates of up to 15 percent in parts of some cities, according to some of our lab’s member companies. Instead, we decided to try creating delivery density in a single location right where the trucks unloaded.

Centralized lockers where people live and work
Accordingly, the Urban Freight Lab’s second research project pilot-tested placing a common carrier locker system in the 62-floor Seattle Municipal Tower in downtown Seattle’s financial district. This step cut the time required to make deliveries in the tower by 78 percent. The next question was where to locate more of these delivery density points, or “mini-distribution nodes,” as the study called them.

Amazon, which is headquartered in Seattle, had already approached regional transportation agency Sound Transit about locating its branded lockers at the agency’s Link light rail stations. But public stewards of the property – the Seattle Department of Transportation, Sound Transit and King County Metro – did not want to advantage one carrier or retailer over others. Instead, we suggested locating common carrier lockers.

The transit agencies saw that this could reduce delivery truck traffic in neighborhoods they served, easing congestion and reducing vehicle emissions. And their mobility hub policies aimed to create lively public spaces that offered not only multiple transportation modes but lots of convenient amenities.

In a survey of 185 riders at three transit stations, our lab’s third research study found strong interest in the lockers, with up to 67 percent of respondents at each station willing to use them and the vast majority willing to carry a package three to six blocks to do so. These responses, plus the fact that some 137,000 people lived within a 30-minute walk of the three stations, suggested that tens of thousands of Seattle residents would be willing to use common carrier lockers at those stations.

For retailers like Nordstrom, the lockers represent a potential solution to porch piracy and other glitches associated with online shopping. “Rather than leaving the package at a door, some carriers want customers to come to their location to collect the package, while others might redeliver,” Loren VandenBerghe, director of transportation for Nordstrom, told us. “Whatever the process, the customer has to track down the package. Instead, we’d prefer to get the package in our customer’s hands when they expect it.”

Researchers have developed criteria for selecting locker locations and chosen five possible sites at or near the transit stations for pilot testing. We have received funding from the U.S. Department of Energy to expand use of common carriers lockers in public spaces to a larger area in Seattle’s dense urban core and start actively managing the load/unload space network with new technology. Delivery drivers will be able to pull right up to lockers and unload goods, and riders can pick up their packages when they hop on or off a bus – making it much more convenient than waiting for a truck and scanning the street for porch pirates.

Recommended Citation:
Goodchild, A. (2018, December 18). Where’s my package? Common carrier freight lockers can ease city traffic and prevent failed deliveries. The Conversation. https://theconversation.com/wheres-my-package-common-carrier-freight-lockers-can-ease-city-traffic-and-prevent-failed-deliveries-108455
Article

How Many Amazon Packages Get Delivered Each Year?

Publication: The Conversation
Publication Date: 2022
Summary:

How many Amazon packages get delivered each year? – Aya K., age 9, Illinois

It’s incredibly convenient to buy something online, right from your computer or phone. Whether it’s a high-end telescope or a resupply of toothpaste, the goods appear right at your doorstep. This kind of shopping is called “e-commerce” and it’s becoming more popular each year. In the U.S., it has grown from a mere 7% of retail purchases in 2012 to 19.6% of retail and $791.7 billion in sales in 2020.

Amazon’s growing reach
For Amazon, the biggest player in e-commerce, this means delivering lots of packages.

In 2021 Amazon shipped an estimated 7.7 billion packages globally, based on its nearly $470 billion in sales.

In 2021 Amazon shipped an estimated 7.7 billion packages globally.

If each of these packages were a 1-foot square box and they were stacked on top of one another, the pile would be six times higher than the distance from the Earth to the Moon. Laid end to end, they would wrap around the Earth 62 times.

Back in the early 2010s, most things bought from Amazon.com were shipped using a third-party carrier like FedEx or UPS. In 2014, however, Amazon began delivering packages itself with a service called “Fulfilled by Amazon.” That’s when those signature blue delivery vans started appearing on local streets.

Since then, Amazon’s logistics arm has grown from relying entirely on other carriers to shipping 22% of all packages in the U.S. in 2021. This is greater than FedEx’s 19% market share and within striking distance of UPS’s 24%. Amazon’s multichannel fulfillment service allows other websites to use its warehousing and shipping services. So your order from Etsy or eBay could also be packed and shipped by Amazon.

The supply chain
To handle that many packages, shipping companies need an extensive network of manufacturers, vehicles and warehouses that can coordinate together. This is called the supply chain. If you’ve ever used a tracking number to follow a package, you’ve seen it in action.

People who make decisions about where to send vehicles and how to route packages are constantly trying to keep costs down while still getting packages to customers on time. The supply chain can do this very effectively, but it also has downsides.

More delivery vehicles on the road produce more greenhouse gas emissions that contribute to climate change, along with pollutants like nitrogen oxides and particulate matter that are hazardous to breathe. Traffic congestion is also a major concern in cities as delivery drivers try to find parking on busy streets.

Urban freight solutions
Are there ways to balance the increasing number of deliveries while making freight safe, sustainable and fast? At the University of Washington’s Urban Freight Lab, we work with companies like Amazon and UPS and others in the shipping, transportation and real estate sectors to answer questions like this. Here are some solutions for what we and our colleagues call the “last mile” – the last leg of a package’s long journey to your doorstep.

  • Electrification: Transitioning from gasoline and diesel vehicles to fleets of electric or other zero-emission vehicles reduces pollution from delivery trucks. Tax credits and local policies, such as creating so-called green loading zones and zero-emission zones for clean vehicles, create incentives for companies to make the switch.
  • Common carrier lockers: Buildings can install lockers at central locations, such as busy transit stops, so that drivers can drop off packages without going all the way to your doorstep. When you’re ready to pick up your items, you just stop by at a time that’s convenient for you. This reduces both delivery truck mileage and the risk of packages being stolen off of porches.
  • Cargo bicycles: Companies can take the delivery truck out of the equation and use electric cargo bicycles to drop off smaller packages. In addition to being zero-emission, cargo bicycles are relatively inexpensive and easy to park, and they provide a healthier alternative for delivery workers.

To learn more about supply chains and delivery logistics, check with your town or city’s transportation department to see if they are testing or already have goods delivery programs or policies, like those in New York and Seattle. And the next time you order something for delivery, consider your options for receiving it, such as walking or biking to a package locker or pickup point, or consolidating your items into a single delivery.

Package delivery can be both convenient and sustainable if companies keep evolving their supply chains, and everyone thinks about how they want delivery to work in their neighborhoods.

Recommended Citation:
Goodchild, A. How many Amazon packages get delivered each year? The Conversation. https://theconversation.com/how-many-amazon-packages-get-delivered-each-year-187587
Paper

Ecommerce and Logistics Sprawl: A Spatial Exploration of Last-Mile Logistics Platforms

 
Download PDF  (3.64 MB)
Publication: Journal of Transport Geography
Volume: 112
Publication Date: 2023
Summary:

The rise of ecommerce helped fuel consumer appetite for quick home deliveries. One consequence has been the placing of some logistics facilities in proximity to denser consumer markets. The trend departs from prevailing discussion on “logistics sprawl,” or the proliferation of warehousing into the urban periphery. This study spatially and statistically explores the facility- and region-level dimensions that characterize the centrality of ecommerce logistics platforms. Analyzing 910 operational Amazon logistics platforms in 89 U.S. metropolitan statistical areas (MSAs) between 2013 and 2021, this study estimates temporal changes in distances to relative, population centroids and population-weighted market densities. Results reveal that although some platforms serving last-mile deliveries are located closer to consumers than upstream distribution platforms to better fulfill time demands, centrality varies due to facility operating characteristics, market size, and when the platform opened.

Ecommerce has transformed the “consumption geography” of cities. These transformations have major implications for shopping behaviors and retail channels, last-mile operations and delivery mode choice, the management and pricing of competing uses for street and curb space, and the spatial ordering and functional role of logistics land uses. In the latter case, researchers have observed a diversification of logistics platforms to more efficiently serve home delivery demand. These platforms range from “dark stores” and “microfullfilment centers” that fulfill on-demand deliveries and omni-channeled retail without a consumer facing storefront, multi-use urban distribution centers that convert unproductive sites (e.g., abandoned rail depots) to more lucrative land uses, and “microhubs” that stage transloading between cargo vans and e-bicycles suited for dense urban neighborhoods.

Logistics spaces play an important role in improving urban livability and environmental sustainability. Planning decisions scale geographically from the region-level to the curb. Facilities such as urban consolidation centers and loading zones can mitigate common delivery inefficiencies, such as low delivery densities and “cruising” for parking, respectively. These inefficiencies generate many negative externalities including climate emissions, air and noise pollution, congestion, and heightened collision risks, especially for vulnerable road users such as pedestrians and bicyclists. Limited commercial data has made it difficult, however, to observe spatial patterns with regards to ecommerce logistics platforms.

Using detailed proprietary data, this paper explores the evolving spatial organization of ecommerce logistics platforms. Given the company’s preeminence as the leading online retailer in the U.S., the paper presents Amazon as a case study for understanding warehousing and distribution (W&D) activity in the larger ecommerce space. Utilizing proprietary data on Amazon logistics facilities between 2013 and 2021, this research explores the geographic shape and explanatory dimensions of ecommerce within major U.S. metropolitan areas. In the following section, this study defines the state of research related to broader W&D land use and its implications to ecommerce’s distinct consumption geography. Afterwards, two methodologies for measuring logistics centrality are tested: a temporally relative barycenter-based metric, the prevailing method in literature, and another GIS-based, population-weighted service distance metric. The two measurements reveal nuances between facility- and region-level differences in the spatial organization of ecommerce platforms, which has yet to be fully researched. After presenting results from an exploratory regression analysis, this study discusses implications for future urban logistics land use and transport decisions.

Recommended Citation:
Fried, T., & Goodchild, A. (2023). E-commerce and logistics sprawl: A spatial exploration of last-mile logistics platforms. Journal of Transport Geography, 112, 103692. https://doi.org/10.1016/j.jtrangeo.2023.103692
Paper

COVID-19 Impacts on Online and In-Store Shopping Behaviors: Why they Happened and Whether they Will Last Post Pandemic

 
Download PDF  (2.75 MB)
Publication:  Transportation Research Record: Journal of the Transportation Research Board
Publication Date: 2023
Summary:

Throughout the COVID-19 pandemic, online and in-store shopping behaviors changed significantly. As the pandemic subsides, key questions are why those changes happened, whether they are expected to stay, and, if so, to what extent. We answered those questions by analyzing a quasi-longitudinal survey dataset of the Puget Sound residents (Washington, U.S.). We deployed structural equation modeling (SEM) to build separate models for food, grocery, and other items shopping to explore the factors affecting such changes. The results revealed that people’s online and in-store shopping frequencies during the pandemic were affected by their perceived health risks, attitudes toward shopping, and pre-pandemic shopping frequencies. Similarly, it was shown that how frequently people expect to shop post pandemic is influenced by their attitudes toward shopping, changes during the pandemic, and their pre-pandemic frequencies. We also classified respondents into five groups, based on their current and expected future shopping behavior changes, and performed a descriptive analysis. The five groups—Increasers, Decreasers, Steady Users, Returnees, and Future Changers—exhibited different trends across online and in-store activities for shopping different goods. The analysis results showed that, while 25% of the respondents increased their online shopping, only 8% to 13% decreased their in-store activities, implying that online shopping did not completely substitute in-store shopping. Moreover, we found that online shopping is a substitution for in-store shopping for groceries, while it complements in-store shopping for food and other items. Additionally, more than 75% of new online shoppers expect to keep purchasing online, while 63%–85% of in-store Decreasers plan to return to their pre-pandemic frequencies.

The rise of e-commerce, busy lifestyles, and the convenience of next- and same-day home deliveries have resulted in exponential growth of online shopping in the U.S., rising from 5% of the total retail in 2011 to 15% in 2020, and it is expected to grow even further in the future. Worldwide, spending on e-commerce passed $4.9 trillion in 2021 and it is projected to surge to $7 trillion by 2025.

In the past few years, there has been ongoing research on how this growth would change people’s travel patterns and whether its effect on in-person activities would be substitution, complementing, or modification. However, there is no single answer to this question, given different product types, regions, demographics, and primary travel modes.

While online purchasing had already been experiencing a growth every year before 2020, the pandemic accelerated this trend. In 2020, online shopping constituted more than 20% of total spending on consumer goods worldwide in comparison to 16.4% in 2019 and 14.4% in 2018. Before COVID-19, it was predicted that total e-commerce sales in the U.S. would grow up to $674.88 billion, yet the actual number turned out to be $799.18 billion. With a 15.9% growth, the U.S. is among the top 10 countries with the highest growth rate in online retail shopping in 2022.

Embracing digital technologies and bringing shops into homes are among the immediate impacts of the pandemic restrictions and lockdowns, with the majority of people reducing their frequency of going to stores and adopting alternative shopping approaches such as curbside pick-up and home delivery. Based on the reports by the U.S. Bureau of Transportation Statistics (BTS), in Nov–Dec 2020, when the penetration of the coronavirus reached its first peak in the U.S., the percentage of people who decided to shop online instead of going to stores increased by up to 10%. During the early pandemic, about 35% of U.S. workers switched to remote working, and from March to April 2020, the average daily number of people staying home increased by 32 million and the total number of trips decreased by 2.5B. Dining-in restaurants were also banned in half of the U.S. states for several months in 2020, which resulted in a significant drop in the restaurant dine-in demand and shifted people toward online food delivery services, and buying groceries online rather than going to store.

These changes were also influenced by socio-demographic characteristics. For instance, according to the BTS, the percentage of people with an annual income close to $125,000 who replaced their in-store shopping by online shopping in Nov–Dec 2020 was twice those with an annual income of $25,000. People in the neighborhoods with higher number of positive COVID-19 cases or higher spread rate of positive new cases were more likely to change their in-store shopping to online-shopping. Senior people were also shown to have higher tendency to shop online compared with younger generations, perhaps because of health and safety concerns. It is worth noting that these changes were not the same across all products; for example, online sales of food and beverage in the U.S. doubled in 2020, while home furniture online sales only increased by about 50%.

Another factor that is proved to have a major effect on people’s shopping behaviors and travel patterns during the pandemic is their risk perception and fears for their health. Irawan et al. found that perceiving COVID-19 as a severe disease decreased people’s tendency to do in-store grocery shopping. Similarly, Moon et al. found out that, during the pandemic, people who considered themselves less vulnerable to the infection were less likely to use online channels for shopping. Several studies have mentioned that the perceived health risk varies among different groups of population and depends on region, age, gender, education, race, and marital status.

Moreover, people’s online and in-store shopping behaviors are affected by their socio-demographic factors and their attitudes toward the activity. The advantages and disadvantages of online shopping over in-store shopping play a role in attitudes toward the activity. The advantages, such as receiving goods without leaving home, having access to a wider variety of products and information, and being able to compare them easily and efficiently, result in a positive attitude toward online shopping, especially during the pandemic given high perceived health risk, formal penalties, or both. On the other hand, online shopping has some disadvantages, such as transaction security concerns and long delivery times, and in-store shopping offers specific benefits, such as the ability to see, touch, feel, and try the products, ensuring the store’s environment quality, immediate possession of the product, social interaction, and entertainment. Therefore, even during the pandemic, some people maintained frequent in-store shopping trips.

Whether the pandemic-induced changes in online and in-store shopping are permanent is still debatable. Sheth discussed that people may find the new routine more convenient, affordable, and accessible, and therefore stick to it even after the pandemic is over. On the contrary, Dannenberg et al. argued that people’s motives to shop online only hold for the time of crisis, and online retailing will decline when circumstances change. Watanabe and Omori showed that most people used to shop online long before the pandemic, and they merely increased their frequency because of infection risk. So, the reasons behind the surge in online shopping might dissipate as COVID-19 recedes.

In this paper, we study how online and in-store shopping behaviors for different goods were affected during COVID-19, and whether those changes are expected to stay post pandemic. We analyze a quasi-longitudinal survey dataset from the Puget Sound region in Washington State, U.S., that includes data on people’s shopping behavior before and during pandemic, as well as their expected shopping behavior after pandemic. The dataset also contains information on socio-demographic characteristics, as well as psychometric questions about COVID-19 risk perception and attitudes toward shopping. Through descriptive analysis and structural equation modeling (SEM), we explore the factors that directly or indirectly affected people’s three shopping activities (online and in-store), for food, grocery, and other items (clothing, home goods, etc.), and investigate the similarities and differences amongst them.

This study is distinguished in several ways from the previous ones that investigated the impacts of COVID-19 on people’s shopping behavior: (1) it applies a unique descriptive analysis by classifying respondents based on their current and expected future shopping trends and studies how socio-demographic characteristics (directly and indirectly) influence people’s shopping behaviors by analyzing the similarities and differences between those groups; (2) it models online and in-store shopping jointly, considering covariations and dependencies between those two modes; (3) it applies the same methodology and set of variables to three different shopping activities (for food, grocery, and other items) and compares and contrasts their observed/expected trends and influencing factors; and (4) in addition to socio-demographic and attitudinal variables, it considers people’s baseline shopping behaviors (how frequently they shopped online and in-store before the pandemic) as factors affecting their expected post-pandemic shopping behaviors.

Authors: Dr. Andisheh Ranjbari, Jorge Manuel Diaz-Gutierrez (Pennsylvania State University, Helia Mohammadi-Mavi (Pennsylvania State University)
Recommended Citation:
Diaz-Gutierrez, J. M., Mohammadi-Mavi, H., & Ranjbari, A. (2023). COVID-19 Impacts on Online and In-Store Shopping Behaviors: Why they Happened and Whether they Will Last Post Pandemic. Transportation Research Record: Journal of the Transportation Research Board, 036119812311551. https://doi.org/10.1177/03611981231155169 
Presentation

Growth of Ecommerce and Ride-Hailing Services is Reshaping Cities: The Urban Freight Lab’s Innovative Solutions

 
Publication: California Transportation Commission (August 15, 2018)
Publication Date: 2018
Summary:

A 20% e-commerce compound annual growth rate (CAGR) would more than double goods deliveries in 5 years. If nothing changes, this could double delivery trips in cities; thereby doubling the demand for load/unload spaces.

Innovation is needed to manage scarce curbs, alleys, and private loading bay space in the new world of on-demand transportation, 1-hour e-commerce deliveries, and coming autonomous vehicle technologies.

The Urban Freight Lab at the University of Washington (UW), in partnership with the City of Seattle Department of Transportation (SDOT), is using a systems engineering approach to solve delivery problems that overlap cities’ and businesses’ spheres of control.

The Urban Freight Lab is a living laboratory where potential solutions are generated, evaluated, and pilot-tested inside urban towers and on city streets.

Recommended Citation:
Goodchild, Anne. Growth of Ecommerce and Ride-Hailing Services is Reshaping Cities: The Urban Freight Lab’s Innovative Solutions. California Transportation Commission (August 15, 2018)
Presentation

Ecommerce and Environmental Justice in Metro Seattle U.S.

 
Publication: Laboratoire Ville Mobilite Transport (City Transportation Mobility Laboratory), Paris
Publication Date: 2022
Summary:

The central research question for this project explores the distributional impacts of ecommerce and its implications for equity and justice.

The research aims to investigate how commercial land use affects people and communities. In 2018, U.S. warehouses surpassed office buildings as the primary form of commercial and industrial land use, now accounting for 18 billion square feet of floor space. Warehouses have experienced significant growth in both number and square footage, becoming the predominant land use in the U.S. Warehouse expansion has strategically sprawled from port areas to suburbs in order to get closer to populations and transportation access.

The research findings reveal a correlation between warehouse locations and lower-income communities, resulting in increased exposure to air pollution and triple the traffic associated with ecommerce. Conversely, higher-income populations experience the least exposure, despite making more than half of their purchases online compared to their lower-income counterparts.

Factors such as race and proximity to highways and warehouse locations emerge as stronger predictors of the volume of freight activity through ecommerce than individuals’ income levels or the number of orders placed. Going forward, there is an opportunity for retailers and distributors to take into account the health implications of warehouse placement, and governments can provide best practices to facilitate municipal coordination, particularly where local authorities may be unaware of the impacts.

Authors: Travis Fried
Presentation

Growth of Ecommerce and Ride-Hailing Services is Reshaping Cities Innovative Goods Delivery Solutions for Cities of the Future

 
Publication: Eno Transportation (August 9, 2018 Webinar)
Publication Date: 2018
Authors: Barbara Ivanov