Skip to content
Report

Evaluation of Sound Transit Train Stations and Transit-Oriented Development Areas for Common Carrier Locker Systems (Final Report)

 
Download PDF  (7.04 MB)
Publication Date: 2018
Summary:

The rapid expansion of ecommerce has flooded American cities with delivery trucks, just as those cities are experiencing booming population growth. Retailers need a more efficient, reliable, and cost-effective way to deliver goods in increasingly crowded urban environments. For their part, cities like Seattle want to minimize traffic congestion, both sustain quality of life for residents and ensure a smooth flow of goods and services.

Common carrier parcel lockers hold tremendous potential for streamlining the urban goods delivery system and addressing these challenges. This research study explores the viability of providing public right of way for common carrier lockers at or near transit stations in Seattle, a ground-breaking step toward improving freight delivery in the city’s fast-growing urban core.

Recommended Citation:
Supply Chain Transportation & Logistics Center. (2018) Evaluation of Sound Transit Train Stations and Transit Oriented Development Areas for Common Carrier Locker Systems.

The Final 50 Feet of the Urban Goods Delivery System: Pilot Test of an Innovative Improvement Strategy

Background

We are living at the convergence of the rise of e-commerce and fast growing cities. Surging growth in U.S. online sales has averaged more than 15% year-over-year since 2010. Total e-commerce sales for 2016 were estimated at $394.9 billion, an increase of 15.1 percent from 2015. This is a huge gain when compared to total retail sales in 2016, which only increased 2.9 percent from 2015. E-commerce sales in 2016 accounted for 8.1 percent of total sales, while accounting for 7.3 percent of total sales in 2015.

This is causing tremendous pressure on local governments to rethink the way they manage street curb parking and alley operations for trucks and other delivery vehicles, and on building operators to plan for the influx of online goods. City managers and policy makers are grappling with high demand for scarce road, curb and sidewalk space, and multiple competing uses. But rapidly growing cities lack data-based evidence for the strategies they are considering to support e-commerce and business vitality, while managing limited parking in street space that is also needed for transit, pedestrians, cars, bikes and trucks.

The Final 50 Feet is the project’s shorthand designation for the last leg of the delivery process, which:

  • Begins when a truck stops at a city-owned Commercial Vehicle Load Zone or alley, or in a privately-owned freight bay or loading dock in a building;
  • May extend along sidewalks or through traffic lanes; and
  • Ends where the end customer takes receipt of delivery.

Research Project

The purpose of the research project is to pilot test a promising strategy to reduce the number of failed first delivery attempts in urban buildings. The test will take place in the Seattle Municipal Tower. It will serve as a case study for transportation and urban planning professionals seeking to reduce truck trips to urban buildings. Urban Freight Lab identified two promising strategies for the pilot test:

  • Locker system: smaller to medium sized deliveries can be placed into a locker which will be temporarily installed during our pilot test
  • Grouped-tenant-floor-drop-off-points for medium sized items if locker is too small or full (4-6 floor groups to be set up by SDOT and Seattle City Light)
  • People will come and pick up the goods at the designated drop off points
  • Flyers with information of drop-off-points will be given to the carriers

UFL will evaluate the ability of the standardized second step pilot test to reduce the number of failed first delivery attempts by:

  • Collecting original data to document the number of failed first delivery attempts before and after the pilot test; and
  • Comparing them to the pilot test goals.

The Final 50 Feet: Common Carrier Locker Pilot Test at Seattle Municipal Tower (Part of Task Order 2)

As part of the Final 50 Feet Research Program, the Urban Freight Lab engaged multiple partners and funding sources to successfully pilot test a common carrier locker system (open to all retail and multiple delivery firms) that created delivery density in the Seattle Municipal Tower.

The pilot tested the ability of new mini-distribution centers such as smart lockers to create delivery density and reduce the time delivery people have to spend in urban towers to complete the work. The Lab collected “before” and “after” data to evaluate the pilot’s premise: that when delivery trucks can pull into a load/unload space that’s close to a mini-distribution node with delivery density (lots of deliveries in one place), everyone benefits. Lab members UPS and the U.S. Postal Service participated in this pilot, so any package they delivered to the building went into the locker system. The pilot was open to the first 100 Municipal Tower tenants who signed up to use the lockers from March to April 2018.

This pilot reduced the average amount of time parcel delivery personnel spent doing their work in the 62-floor office tower by 78%, when compared with going floor-to-floor, door-to-door in the tower. It demonstrates the UFL’s unique capability to develop cross-functional business and city working partnerships, gain senior executives’ participation in research, and effectively manage innovative and complex projects that have a high level of uncertainty. This pilot provides evidence that the common carrier locker system strategy can achieve a significant reduction in delivery time.

Presentation

Growth of Ecommerce and Ride-Hailing Services is Reshaping Cities Connecting State and City DOTs, and Transit Agencies for Innovative Solutions

 
Publication: AASHTO 2018 Joint Policy Conference: Connecting the DOTs
Volume: 19-Jul-18
Publication Date: 2018
Summary:

There is not enough curb capacity, now.

A recent curb parking utilization study in the City of Seattle indicated 90% or higher occupancy rates in Commercial Vehicle Load Zones (CVLZs) for some areas for much of the workday.

The Final Fifty Feet is a new research field.

The Final 50 Feet project is the first time that researchers have analyzed both the street network and cities’ vertical space as one unified goods delivery system. It focuses on:

  • The use of scarce curb, buildings’ internal loading bays, and alley space
  • How delivery people move with handcarts through intersections and sidewalks; and
  • On the delivery processes inside urban towers.
Authors: Barbara Ivanov
Paper

Do Parcel Lockers Reduce Delivery Times? Evidence from the Field

 
Download PDF  (1.61 MB)
Publication: Transportation Research Part E: Logistics and Transportation Review
Volume: 172 (2023)
Publication Date: 2023
Summary:

Common carrier parcel lockers have emerged as a secure, automated, self-service means of delivery consolidation in congested urban areas, which are believed to mitigate last-mile delivery challenges by reducing out-of-vehicle delivery times and consequently vehicle dwell times at the curb. However, little research exists to empirically demonstrate the environmental and efficiency gains from this technology. In this study, we designed a nonequivalent group pre-test/post-test control experiment to estimate the causal effects of a parcel locker on delivery times in a residential building in downtown Seattle. The causal effects are measured in terms of vehicle dwell time and the time delivery couriers spend inside the building, through the difference-in-difference method and using a similar nearby residential building as a control. The results showed a statistically significant decrease in time spent inside the building and a small yet insignificant reduction in delivery vehicle dwell time at the curb. The locker was also well received by the building managers and residents.

Recommended Citation:
Ranjbari, A., Diehl, C., Dalla Chiara, G., & Goodchild, A. (2023). Do Commercial Vehicles Cruise for Parking? Empirical Evidence from Seattle. Transportation Research Part E: Logistics and Transportation Review, 172, 103070. https://doi.org/10.1016/j.tre.2023.103070