Skip to content
Paper

Seattle Microhub Delivery Pilot: Evaluating Emission Impacts and Stakeholder Engagement

 
Download PDF  (2.87 MB)
Publication: Case Studies on Transport Policy
Publication Date: 2023
Summary:

Urban freight deliveries using microhubs and e-cargo cycles have been gaining attention in cities suffering from congestion and emissions. E-cargo cycle deliveries and microhubs used as transshipment points in urban cores can replace trucks to make cities more livable. This study describes and empirically evaluates an e-cargo tricycle pilot conducted with multi-sector stakeholders in Seattle to report the potential benefits and pitfalls of such practices. The pilot held stakeholder workshop sessions to collect inputs of interest and expectations from the project. Mobile devices used by drivers on e-cargo tricycle and cargo van routes collected delivery data to use for empirical assessment. Total vehicle miles traveled and tailpipe carbon emissions served as performance metrics when comparing e-cargo tricycle and cargo van deliveries. The results showed the net-benefit of the microhub and e-cargo tricycle routes depend on the upstream operations when replenishing packages.

The participatory approach to pilot design also provided insights into the factors of a successful pilot, with implications for scaling future e-cargo cycle delivery systems in North American cities. Namely, microhubs’ ability to host alternative revenue sources and value-added services is a boon for long-term financial competitiveness. However, lack of digital/physical infrastructure and work training/regulations specific to e-cargo cycle delivery operations present a barrier.

Recommended Citation:
Gunes, Seyma, Travis Fried, and Anne Goodchild. “Seattle Microhub Delivery Pilot: Evaluating Emission Impacts and Stakeholder Engagement.” Case Studies on Transport Policy. Elsevier BV, November 2023. https://doi.org/10.1016/j.cstp.2023.101119.
Blog

What is Microfreight? Downsizing Delivery for a Multimodal and Sustainable Future

Publication: Goods Movement 2030: An Urban Freight Blog
Publication Date: 2023
Summary:

“Why deliver two-pound burritos in two-ton cars?”

That’s the question posed by sidewalk delivery robot company Serve, which is delivering food in places like Los Angeles. Sure, using something other than a car for items like a burrito makes sense. But what about a sofa? Urban delivery is all about right-sizing, context, and connecting logically and efficiently to the broader delivery network.

At the Urban Freight Lab (UFL), we talk about things like sidewalk delivery robots and e-bikes as microfreight. Microfreight is about moving goods using smaller, more sustainable modes where possible. Think micromobility, but for moving goods, not people, in the last mile of delivery.

Microfreight was one of the four topics UFL members voted to explore as part of the Urban Freight in 2030 Project. In the right city context, using microfreight can be both economical for freight businesses and more sustainable in terms of decarbonization and city dweller quality of life. We intentionally chose to hold the UFL spring meeting on microfreight in New York City, a city on the leading edge of the multimodal goods movement. The city’s perch on that leading edge makes sense, as the densest city in the U.S.; a city with sky-high delivery demand coming from people living in sky-high towers; and a city government working to proactively manage that reality. To be sure, NYC is one of a kind when it comes to dense, vertical living. Because of this density and intense interaction between modes, the Big Apple is an important place to watch — and a great place for us to share learning, expertise, and ideas.

And when we watched the Midtown Manhattan streets during that UFL meeting, we saw throngs of people on e-bikes and cargo bikes making food and ecommerce deliveries. But microfreight is about much more than just bikes. It includes personal delivery devices (PDDs) and drones. It even includes walking, an element that permeates nearly every last-mile delivery segment, especially the final 50 feet of a trip. Yet walking is something normally talked about for moving people, much less so for moving goods. To be sure, we saw plenty of deliveries being made on foot while in NYC, too!

Here’s a rundown of what we consider to be microfreight.

Recommended Citation:
"What is Microfreight? Downsizing Delivery for a Multimodal and Sustainable Future." Goods Movement 2030 (blog). Urban Freight Lab, June 19, 2023. https://www.goodsmovement2030.com/post/microfreight-downsizing-delivery-for-a-multimodal-and-sustainable-future.
Blog

What Policies Would Speed Cargo Bike Adoption in U.S. Cities? Urban Freight Lab Members Weigh In.

Publication: Goods Movement 2030: An Urban Freight Blog
Publication Date: 2023
Summary:

It becomes easier to understand the barriers to scaling up cargo bikes for last-mile delivery when you hear Mark Chiusano, Owner/CEO of Cornucopia Logistics and affiliates, talk about the complexity of operations in New York City. Cornucopia works with Amazon (both companies are Urban Freight Lab members) to run a fleet of more than 100 cargo bikes making thousands of weekly deliveries for Amazon Fresh and Whole Foods locations in Manhattan. (Amazon owns Whole Foods.)

Pricey Midtown Manhattan space is leased in a private parking garage across from an Amazon warehouse to store the bike and trailer fleet. But fire prevention and other safety rules prevent the bikes from being charged there, so bike batteries have to be transported to a separate charging station, then back to the Midtown garage. And other rules — both federal and state — wind up limiting the models of cargo bikes that can be used and how they can be used. The bike fleet requires constant maintenance, yet vendors that supply skilled commercial e-bike mechanics are still few and far between. While bikes don’t require a commercial driver’s license to operate (unlike vans or trucks), wages for bikers must compete with those of van/truck drivers. Perhaps unsurprisingly, the cost per delivery can be higher with cargo bikes than with a traditional van.

These are among the challenges of trying to scale cargo bikes for last-mile delivery in the U.S. — a key discussion at the spring meeting of the Urban Freight Lab, held in New York City. We talked a lot about potential policy solutions to surmount such challenges, too, given the growing focus on building a net-zero future. And we shared research, emerging pilots and expertise from both the public and private sectors.

To tease out possible paths to scale, members weighed in on the feasibility and effectiveness of six strategies for overcoming roadblocks in this blog post.

Recommended Citation:
“What Policies Would Speed Cargo Bike Adoption in U.S. Cities? Urban Freight Lab Members Weigh In.” Goods Movement 2030 (blog). Urban Freight Lab, July 20, 2023. https://www.goodsmovement2030.com/post/cargo-bike-adoption.
White Paper

Biking the Goods: How North American Cities Can Prepare for and Promote Large-Scale Adoption of E-Cargo Bikes

 
Download PDF  (1.79 MB)
Publication Date: 2023
Summary:

The distribution of goods and services in North American cities has conventionally relied on diesel-powered internal combustion engine (ICE) vehicles. Recent developments in electromobility have provided an opportunity to reduce some of the negative externalities generated by urban logistics systems.

Cargo e-bikes — electric cycles specially designed for cargo transportation — represent an alternative environmentally friendly and safer mode for delivering goods and services in urban areas. However, lack of infrastructure, legal uncertainties, and a cultural and economic attachment to motorized vehicles has hindered their adoption. Cities play a crucial role in reducing these barriers and creating a leveled playing field where cargo e-bikes can be essential to urban logistics systems.

This paper aims to inform urban planners about what cargo e-bikes are, how they have been successfully deployed in North America to replace ICE vehicles, and identify actionable strategies cities can take to encourage their adoption while guaranteeing safety for all road users.

Gathering data and opinions from key public and private sector stakeholders and building on the expertise of the Urban Freight Lab, this paper identifies nine recommendations and 21 actions for urban planners across the following four main thematic areas:

  1. Infrastructure: cycling, parking infrastructure, and urban logistics hubs
  2. Policy and Regulation: e-bike law, safety regulation, and policies de-prioritizing vehicles
  3. Incentives: rebates and business subsidies
  4. Culture and Education: labor force training, educational programs, and community-driven adoption

Acknowledgements

The Urban Freight Lab acknowledges the following co-sponsors for financially supporting this research: Bosch eBike Systems, Fleet Cycles, Gazelle USA, Michelin North America, Inc., Net Zero Logistics, Pacific Northwest Transportation Consortium (PacTrans) Region 10, Seattle Department of Transportation, and Urban Arrow.

Technical contributions and guidance: Amazon, B-Line (Franklin Jones), Cascade Bicycle Club, Coaster Cycles, City of Boston, City of Portland, Downtown Seattle Business Association (Steve Walls), New York City Department of Transportation, People for Bikes (Ash Lovell), Portland Bureau of Transportation, University of Washington Mailing Services (Douglas Stevens), UPS,

Recommended Citation:
Dalla Chiara, G., Verma, R., Rula, K., Goodchild, A. (2023). Biking the Goods: How North American Cities Can Prepare for and Promote Large-Scale Adoption of Cargo e-Bikes. Urban Freight Lab, University of Washington.

Biking the Goods: How North American Cities Can Prepare for and Promote Large-Scale Adoption

With the rise in demand for home deliveries and the boom of the e-bike market in the U.S., cargo cycles are becoming the alternative mode of transporting goods in urban areas. However, many U.S. cities are struggling to decide how to safely integrate this new mode of transportation into the pre-existing urban environment.

In response, the Urban Freight Lab is developing a white paper on how cities can prepare for and promote large-scale adoption of cargo cycle transportation. Sponsors include freight logistics providers, bicycle industry leaders, and agencies Bosch eBike Systems, Fleet Cycles, Gazelle USA, Michelin North America, Inc., Net Zero Logistics, the Seattle Department of Transportation, and Urban Arrow.

The Urban Freight Lab is internationally recognized as a leader in urban freight research, housing a unique and innovative workgroup of private and public stakeholders and academic researchers working together to study and solve urban freight challenges. The Urban Freight Lab has previously worked on evaluating, studying, and deploying cargo cycles in Asia and the U.S, and is recognized as an expert leader in North America on cargo cycle research.

Objectives
The objectives of the white paper are the following:

  1. Define and understand what types of cargo bikes exist in North America, their main features, how they are operated, and the infrastructure they need.
  2. Identify opportunities for and challenges to large-scale adoption of cargo cycles in North American cities.
  3. Learn from case studies of U.S. cities’ approaches to regulating and promoting cargo cycles.
  4. Provide recommendations for how cities can safely recognize, enable and encourage large-scale adoption of cargo bikes, including infrastructure, policy, and regulatory approaches.

Biking for Goods: A Case Study on the Seattle Pedaling Relief Project

1. Introduction
One of the disruptions brought by the COVID-19 pandemic was the reduction of in-store shopping, and the consequent increase in online shopping and home deliveries. However, not everyone had equal access to online shopping and home-delivery services. Customers relying on food banks were forced to shop in-store even during the pandemic. In 2020, the Cascade Bicycle Club started the Pedaling Relief Project (PRP) – a not-for-profit home delivery service run by volunteers using bikes to pick up food at food banks and deliver to food bank customers, among other services.

The Urban Freight Lab collaborates with the Cascade Bicycle Club (CBC) to study and improve PRP operations. For this work, students in Prof. Anne Goodchild’s Transportation Engineering course on Transportation Logistics (CET 587) are undertaking a case study: to analyze the transport and logistics system of the Pedaling Relief Project and provide recommendations for how to improve operations.

2. Background
2.1. Food rescue at a glance
An estimated 94,500 tons of food from Seattle business establishments end up in compost and landfills each year, while many members of our community remain food insecure. The process of food rescuing consists of the gleaning of edible food from business establishments – called donor businesses such as grocery stores, restaurants, and commissary kitchens – that otherwise would enter the waste stream and be re-distributed to local food programs. Hunger relief agencies, also referred to as food banks, are non-profit organizations that collect rescued food, either directly from businesses or through food rescue distributors (such as Food Lifeline or Northeast Harvest) and re-distribute it to the community through meal programs, walk-ins, and pop-up food pantries, student backpack programs, among others.

Read more about the Seattle food rescue system in SCTL’s report (2020) on “Improving Food Rescue in Seattle: What Can Be Learned from a Supply Chain View?

2.2. Pedaling Relief Project
In 2020 the Cascade Bicycle Club started the Pedaling Relief Project (PRP), a volunteer-based program that collaborates with local food banks to offer three main types of services — (1) grocery delivery, (2) food rescue, (3) little free pantry restocking — coordinating a network of volunteers on bikes.

  1. Grocery delivery (GD) service consists of picking up grocery bags from food banks and performing delivery routes, distributing food to food bank customers that asked for home delivery services.
  2. Food rescue (FR) services support the existing distributors by picking up food at business establishments and carrying rescued food to local food banks.
  3. Little free pantries restocking (LFPR) services consist of picking up food at local food banks and carrying it to neighborhood micro pantries –containers placed on local streets and open to everyone to store food from donors to whoever needs it. Learn more about the Little free pantries project on thelittlefreepantries.org.

Volunteers use their own bikes, with some cargo carry capacity, or can request a bike trailer or cargo bike from the Cascade Bicycle Club.

2.3. Cargo Bikes
Cargo bikes are two/three/four-wheel bikes with some cargo-carrying capacity. They are increasingly used as an alternative mode to trucks and vans to transport goods in urban areas. Cargo bikes are often supported by an electric motor that assists the driver when pedaling. Compared to internal combustion engine vehicles, cargo bikes do not produce tailpipe emissions and they consume less energy than electric vans (Verlinghieri et al., 2021). They also offer several operational advantages: they are more agile in navigating urban road traffic, they can use alternative road infrastructure such as bike lanes and sidewalks to drive and park, they can park closer to their delivery destination, reducing walking distances and parking dwell times (Dalla Chiara et al., 2020).

3. Project instructions

The CBC provided access to anonymous data on the PRP operations for the exclusive use of the 2022 CET 587 course student cohort final projects. Students are asked to individually perform empirical research using the provided data and/or self-collected data on the PRP operations with the following objectives:

  • Empirically analyze and describe PRP operations.
  • Provide recommendations on what actions can be taken to improve PRP operations.

Projects will meet the following two requirements:

  • Use the provided data and/or self-collected and/or publicly sourced data to perform empirical analysis
  • Provide justified and concrete recommendations on how to improve the PRP.
  • Complete deliverables 1 and 2 (see below), which consist of 2 presentations, a project proposal, and a final project report.

Project progress timeline and deliverables:

Weeks Progress & Deliverables
1-2 Become familiar with R language programming; PRP background and data
3 CBC gives a guest lecture about PRP
4-5 Project proposal; 2-minute lightning talk about the project proposal
Deliverable 1: 1-page project proposal
6-10 Implement proposed methodology and perform research
11 Each student will give a 15-minute presentation of the main results of the project
Deliverable 2: Final report
The following are potential project directions:
  • Analyze current routes performed by volunteers. How can they be improved? Get the work done more quickly, or with fewer bikes?
  • Analyze data from little free pantries restocking. Collect additional data on the use of Little Free Pantries by manual observations or by installing sensors in a few of them. Can we model demand and supply for food donations?
  • Collect and analyze GPS data by signing up and performing some of the PRP routes yourself. What type of infrastructure do cargo bikes need and how does street and curb use behavior differ between cargo bikes and vans? What can the city do to better support this type of activity?
  • Analyze volunteers’ behaviors data. Is it possible to model the supply of volunteers? Can you simulate different scenarios of volunteer supply?
  • Develop your own direction with approval.

Students will be provided with a base dataset on PRP operations. Students are encouraged to use other datasets self-collected or from public data sources (e.g. check out the SDOT Open Data Portal), to share ideas in class and among each other, to use as much as possible class time, guest lectures and office hours to ask questions and share ideas.

1: 1-page project proposal and 2-minute lightning talk describing motivation, project objective(s) and research question(s), proposed methodology (data to use/collect, methods to implement), and expected results.

2: Final report and 10-minute presentation describing data used, including sample size and sample statistics, how data collection was performed, empirical analysis performed using data and results from the analysis, and conclusions, key findings, and key recommendations.

UPS E-Bike Delivery Pilot Test in Seattle: Analysis of Public Benefits and Costs (Task Order 6)

The City of Seattle granted a permit to United Parcel Service, Inc. (UPS) in fall 2018 to pilot test a new e-bike parcel delivery system in the Pioneer Square/Belltown area for one year. The Seattle Department of Transportation (SDOT) commissioned the Urban Freight Lab (UFL) to quantify and document the public impacts of this multimodal delivery system change in the final 50 feet of supply chains, to provide data and evidence for development of future urban freight policies.

The UFL will conduct analyses into the following research questions:

  1. What are the total changes in VMT and emissions (PM and GHG) to all three affected cargo van routes due to the e-bike pilot test in the Pike Place Market and neighboring areas?
  2. What is the change in the delivery van’s dwell time, e.g. the amount of time the van is parked, before and after introducing the e-bike?
  3. How does the e-bike system affect UPS’ failed first delivery (FFD) attempt rate along the route?
  4. If UPS begins to stage drop boxes along the route for the e-bike (instead of having to replenish from the parked trailer) what are the impacts to total VMT and emissions?
  5. How do e-bike delivery operations impact pedestrian, other bike, and motor traffic?
Paper

How Cargo Cycle Drivers Use the Urban Transport Infrastructure

 
Download PDF  (10.47 MB)
Publication: Transportation Research Part A: Policy and Practice
Volume: 167
Publication Date: 2023
Summary:

Electric cargo cycles are often considered a viable alternative mode for delivering goods in an urban area. However, cities in the U.S. are struggling to regulate cargo cycles, with most authorities applying the same rules used for motorized vehicles or traditional bikes. One reason is the lack of understanding of the relationships between existing regulations, transport infrastructure, and cargo cycle parking and driving behaviors.

In this study, we analyzed a cargo cycle pilot test in Seattle and collected detailed data on the types of infrastructure used for driving and parking. GPS data were augmented by installing a video camera on the cargo cycle and recording the types of infrastructure used (distinguishing between the travel lane, bicycle lane, and sidewalk), the time spent on each type, and the activity performed.

The analysis created a first-of-its-kind, detailed profile of the parking and driving behaviors of a cargo cycle driver. We observed a strong preference for parking (80 percent of the time) and driving (37 percent of the time) on the sidewalk. We also observed that cargo cycle parking was generally short (about 4 min), and the driver parked very close to the delivery address (30 m on average) and made only one delivery. Using a random utility model, we identified the infrastructure design parameters that would incentivize drivers to not use the sidewalk and to drive more on travel and bicycle lanes.

The results from this study can be used to better plan for a future in which cargo cycles are used to make deliveries in urban areas.

Recommended Citation:
Dalla Chiara, G., Donnelly, G., Gunes, S., & Goodchild, A. (2023). How Cargo Cycle Drivers Use the Urban Transport Infrastructure. Transportation Research Part A: Policy and Practice, 167, 103562. https://doi.org/10.1016/j.tra.2022.103562
Student Thesis and Dissertations

Micro-Consolidation Practices in Urban Delivery Systems: Comparative Evaluation of Last Mile Deliveries Using e-Cargo Bikes and Microhubs

 
Download PDF  (1.79 MB)
Publication Date: 2021
Summary:

The demand for home deliveries has seen a drastic increase, especially in cities, putting urban freight systems under pressure. As more people move to urban areas and change consumer behaviors to shop online, busy delivery operations cause externalities such as congestion and air pollution.

Micro-consolidation implementations and their possible pairing with soft transportation modes offer practical, economic, environmental, and cultural benefits. Early implementations of micro-consolidation practices were tested but cities need to understand their implications in terms of efficiency and sustainability.

This study includes a research scan and proposes a typology of micro-consolidation practices. It focuses on assessing the performance of microhubs that act as additional transshipment points where the packages are transported by trucks and transferred onto e-bikes to complete the last mile.

The purpose of the study is to assess the performance of delivery operations using a network of microhubs with cargo logistics and identify the conditions under which these solutions can be successfully implemented to improve urban freight efficiencies and reduce emissions. The performance is evaluated in terms of vehicle miles traveled, tailpipe CO2 emissions, and average operating cost per package using simulation tools. Three different delivery scenarios were tested that represents 1) the baseline scenario, where only vans and cars make deliveries; 2) the mixed scenario, where in addition to vans and cars, a portion of packages are delivered by e-bikes; and 3) the e-bike only scenario, where all package demand is satisfied using microhubs and e-bikes.

The results showed that e-bike delivery operations perform the best in service areas with high customer density. At the highest customer demand level, e-bikes traveled 7.7% less to deliver a package and emitted 91% less tailpipe CO2 with no significant cost benefits or losses when compared with the baseline scenario where only traditional delivery vehicles were used. Cargo logistics, when implemented in areas where the demand is densified, can reduce emissions and congestion without significant cost implications.

Authors: Şeyma Güneş
Recommended Citation:
Gunes, S. (2021). Micro-Consolidation Practices in Urban Delivery Systems: Comparative Evaluation of Last Mile Deliveries Using e-Cargo Bikes and Microhubs, University of Washington Master's Thesis.
Report

Cargo E-Bike Delivery Pilot Test in Seattle

 
Download PDF  (2.98 MB)
Publication Date: 2020
Summary:

This study performed an empirical analysis to evaluate the implementation of a cargo e-bike delivery system pilot tested by the United Parcel Service, Inc. (UPS) in Seattle, Washington. During the pilot, a cargo e-bike with a removable cargo container was used to perform last-mile deliveries in downtown Seattle. Cargo containers were pre-loaded daily at the UPS Seattle depot and loaded onto a trailer, which was then carried to a parking lot in downtown.

Data were obtained for two study phases. In the “before-pilot” phase, data were obtained from truck routes that operated in the same areas where the cargo e-bike was proposed to operate. In the “pilot” phase, data were obtained from the cargo e-bike route and from the truck routes that simultaneously delivered in the same neighborhoods. Data were subsequently analyzed to assess the performance of the cargo e-bike system versus the traditional truck-only delivery system.

The study first analyzed data from the before-pilot phase to characterize truck delivery activity. Analysis focused on three metrics: time spent cruising for parking, delivery distance, and dwell time. The following findings were reported:

  • On average, a truck driver spent about 2 minutes cruising for parking for each delivery trip, which represented 28 percent of total trip time. On average, a driver spent about 50 minutes a day cruising for parking.
  • Most of the deliveries performed were about 30 meters (98 feet) from the vehicle stop location, which is less than the length of an average blockface in downtown Seattle (100 meters, 328 feet). Only 10 percent of deliveries were more 100 meters away from the vehicle stop location.
  • Most truck dwell times were around 5 minutes. However, the dwell time distribution was right-skewed, with a median dwell time of 17.5 minutes.

Three other metrics were evaluated for both the before-pilot and the pilot study phases: delivery area, number of delivery locations, and number of packages delivered and failed first delivery rate. The following results were obtained:

  • A comparison of the delivery areas of the trucks and the cargo e-bike before and after the pilot showed that the trucks and cargo e-bike delivered approximately in the same geographic areas, with no significant changes in the trucks’ delivery areas before and during the pilot.
  • The number of establishments the cargo e-bike delivered to in a single tour during the pilot phase was found to be 31 percent of the number of delivery locations visited, on average, by a truck in a single tour during the before-pilot phase, and 28 percent during the pilot phase.
  • During the pilot, the cargo e-bike delivered on average to five establishments per hour, representing 30 percent of the establishments visited per hour by a truck in the before-pilot phase and 25 percent during the pilot.
  • During the pilot, the number of establishments the cargo e-bike delivered to increased over time, suggesting a potential for improvement in the efficiency of the cargo e-bike.
  • The cargo e-bike delivered 24 percent of the number of packages delivered by a truck during a single tour, on average, before the pilot and 20 percent during the pilot.
  • Both before and during the pilot the delivery failed rate (percentage of packages that were not delivered throughout the day) was approximately 0.8 percent. The cargo e-bike experienced a statistically significantly lower failed rate of 0.5 percent with respect to the truck fail rate, with most tours experiencing no failed first deliveries.

The above reported empirical results should be interpreted only in the light of the data obtained. Moreover, some of the results are affected by the fact that the pilot coincided with the holiday season, in which above average demand was experienced. Moreover, because the pilot lasted only one month, not enough time was given for the system to run at “full-speed.”

Recommended Citation:
Urban Freight Lab (2020). Cargo E-Bike Delivery Pilot Test in Seattle.