Publications
Searching for:
- "CNN model"
A convolutional neural network (CNN or ConvNet) is a network architecture for deep learning that learns directly from data. CNNs are particularly useful for finding patterns in images to recognize objects, classes, and categories. They can also be effective for classifying audio, time series, and signal data.
Paper
Published: 2022
Journal/Book: Transportation Research Part C: Emerging Technologies
Summary:
At the core of any flight schedule is the four dimensional (4D) trajectories which are comprised of three spatial dimensions with time added as the fourth dimension. Each trajectory contains spatial and temporal features that are associated with uncertainties that make the prediction process complex. Because of the increasing demand for air transportation, airports and airlines must have optimized schedules to best use the airports’ infrastructure potential.
At the core of any flight schedule is the four dimensional (4D) trajectories which are comprised of three spatial dimensions with time added as the fourth dimension. Each trajectory contains spatial and temporal features that are associated with uncertainties that make the prediction process complex. Because of the increasing demand for air transportation, airports and airlines must have optimized schedules to best use the airports’ infrastructure potential.