Skip to content
Technical Report

Route Machine: UW Medicine Department of Medicine Courier Services

 
Download PDF  (1.85 MB)
Publication Date: 2019
Summary:

The goal of this report is to survey the current state of practice of UW Medicine Department of Laboratory Medicine Courier Services in order to evaluate potential software(s) that can be implemented to fill information gaps needed to effectively and efficiently make informed decisions. The report describes the high-level goals and decision scope of the route machine, observations of the current state, evaluation criteria and ‘route machine’ options.

The information in this report can be used to inform:

  • What data insights (indicators) might be helpful for strategizing courier routing decisions and communicating information to leadership
  • Potential improvement strategies and what they might look like in implementation
  • Suitability of various data collection, visualization, and analytical tools, and off-the-shelf packages

This information provides the UW Department of Laboratory Medicine Courier Services the information needed to select tools(s), and general data insights the ‘route machine’ for implementation.

The rest of this document is organized as follows:

  • Objectives and decision scope of the ‘route machine’
  • Observations of the current routes
  • A list of key-performance indicators
  • Potential strategies for improving routes
  • Recommendations
  • Screenshots of Dashboard Prototypes and WorkWaze
Recommended Citation:
Greene, Chelsea and Anne Goodchild (2019). Route Machine: UW Medicine Department of Medicine Courier Services.
Technical Report

Improved Freight Modeling of Containerized Cargo Shipments between Ocean Port, Handling Facility, and Final Market for Regional Policy and Planning

 
Download PDF  (1.07 MB)
Publication: Transportation Northwest (TransNow)
Publication Date: 2008
Summary:
The proposed research will address an emerging need by local, state and regional transportation planners and policymakers to better understand the transportation characteristics, functions and dynamics of ocean port-to-handling facility and handling facility-to-final market freight movements. The research will also address a gap in the academic literature for freight transportation models that capture underlying economic forces. This research effort will focus on the development and refinement of a regional freight model of urban container movements from the port to a handling facility and beyond. Existing regional transportation planning models and analytical tools have evolved from passenger travel demand models that are ill-suited to fully capture the business decisions and economic influences driving urban freight flows and have been further constrained by access to appropriate freight data. This research activity proposes a modeling approach which will capture the fundamental economic choices individual shippers consider when trading-off the marginal benefits/costs associated with warehouse inventory management/control relative to transportation access and flow while incorporating the primary freight generation activity centers (warehouse/distribution centers) in the Puget Sound region. This work will identify, evaluate and incorporate data for the Puget Sound region recently available from a variety of existing sources. Some data collection may also be necessary. The final product of this research study will be an improved tool to understand current and future freight movements through the Puget Sound region, and a methodology which will expand the current state of knowledge, and may be applied in other regions, both domestic and international. It will allow more in-depth and timely evaluation and analysis of different local/regional transportation policy initiatives such as the impact of migration of the main warehousing region, and development of inland inter-modal port facilities.

 

 

Authors: Dr. Anne Goodchild, Kaori Fugisawa, Eric Jessup
Recommended Citation:
Goodchild, Anne V., Eric L. Jessup, and Kaori Fugisawa. Improved Freight Modeling of Containerized Cargo Shipments between Ocean Port, Handling Facility, and Final Market for Regional Policy and Planning. No. TNW2008-08. 2008.
Technical Report

Year One Progress Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System, Meet Future Demand for City Passenger and Delivery Load/Unload Spaces, and Reduce Energy Consumption

 
Download PDF  (5.08 MB)
Publication: U.S. Department of Energy
Publication Date: 2019
Summary:

The objectives of this project are to develop and implement a technology solution to support research, development, and demonstration of data processing techniques, models, simulations, a smart phone application, and a visual-confirmation system to:

  1. Reduce delivery vehicle parking seeking behavior by approximately 20% in the pilot test area, by returning current and predicted load/unload space occupancy information to users on a web-based and/or mobile platform, to inform real-time parking decisions
  2. Reduce parcel truck dwell time in pilot test areas in Seattle and Bellevue, Washington, by approximately 30%, thereby increasing productivity of load/unload spaces near common carrier locker systems, and
  3. Improve the transportation network (which includes roads, intersections, warehouses, fulfillment centers, etc.) and commercial firms’ efficiency by increasing curb occupancy rates to roughly 80%, and alley space occupancy rates from 46% to 60% during peak hours, and increasing private loading bay occupancy rates in the afternoon peak times, in the pilot test area.

The project team has designed a 3-year plan, as follows, to achieve the objectives of this project.

In Year 1, the team developed integrated technologies and finalized the pilot test parameters. This involved finalizing the plan for placing sensory devices and common parcel locker systems on public and private property; issuing the request for proposals; selecting vendors; and gaining approvals necessary to execute the plan. The team also developed techniques to preprocess the data streams from the sensor devices, and began to design the prototype smart phone parking app to display real-time load/unload space availability, as well as the truck load/unload space behavior model.

Recommended Citation:
Urban Freight Lab (2020). Year One Progress Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System.
Technical Report

Development, Deployment, and Assessment of Activity-Based Transportation Courses

 
Download PDF  (2.60 MB)
Publication: U.S. Federal Highway Administration
Publication Date: 2012
Summary:

This project developed four new activity‐based transportation courses including “Traffic Signal Systems Operations and Design”, “Understanding and Communicating Transportation Data”, “Introduction to Freight Transportation”, and “Rural Highway Design and Safety”. The courses are learner‐centered in which activities completed by students form the basis for their learning. The courses were offered fourteen times to a total of 195 students. Activity books that included 142 activities were developed for the four courses. The books and all supporting materials are available on the project web site. A number of assessments and evaluations were conducted to determine how effective the courses and materials were in meeting project objectives. The active learning style was a challenge for many students, as they were required to be prepared for class and to do “active” work during class. In general, there was an acceptance of the value of the active learning environments and how they positively contributed to student learning.

Authors: Dr. Anne Goodchild, Michael Kyte, Steve Beyerlein, Shane Brown, Chris Monsere, Kelly Pitera, Ming Le
Recommended Citation:
Kyte, Michael, Steve Beyerlein, Shane Brown, Chris Monsere, Anne Goodchild, Kelly Pitera, and Ming Lee. "Development, Deployment, and Assessment of Activity-Based Transportation Courses." (2012).