Skip to content

The Final 50 Feet of the Urban Goods Delivery System: Documenting Loading Bays, Demonstrating Parcel Lockers’ Proof of Concept & Tracking Curb Use in Seattle’s Interconnected Load/Unload Network (Task Order 2)

Start Date: January 2017
Funding: City of Seattle Department of Transportation (SDOT), Pacific Northwest Transportation Consortium (PacTrans)
Project Budget: $240,000
Principal Investigator(s): Dr. Anne Goodchild
Description:

Part of the Final 50 Feet Research Program, this project contains: a curb occupancy study, a survey of First and Capitol Hill Loading Bays, a pilot test at Seattle Municipal Tower, and the development of a toolkit.

Private Loading Bays and Docks Inventory Study

Taken together with the Urban Freight Lab’s earlier private infrastructure inventory (Seattle Center City Alley Infrastructure Inventory and Occupancy Study 2018) in Downtown Seattle, Uptown, and South Lake Union, this report finalizes the creation of a comprehensive Center City inventory of private loading/unloading infrastructure.

To the research team’s knowledge, Seattle is the first city to maintain a database with the location and features of private loading/unloading infrastructure (meaning, out of the public right of way). This matters because these facilities are privately owned and managed, cities lack information about them—information critical to urban planning. The private infrastructure has been a missing piece of the urban freight management puzzle. The work in this report helps complete that puzzle and advance efforts to make urban freight delivery more efficient in increasingly dense, constrained cities, such as Seattle.

Key Findings from Private Loading Bays and Docks Inventory

Data collectors in this study identified, examined, and collected key data on 92 private loading docks, bays and areas across 421 city blocks in the neighborhoods of Capitol Hill, First Hill, and a small segment of the International District east of I-5.  The earlier inventory in Downtown Seattle, Uptown, and South Lake Union had proportionally more than twice the density of private infrastructure of Capitol Hill and First Hill documented in this report. This finding is unsurprising. While all the inventoried neighborhoods are in the broad Center City area, they are fundamentally different neighborhoods with different built environments, land use, and density. Variable demand for private infrastructure—and the resulting supply—stems from those differences.

Researchers found that a trust relationship with the private sector is essential to reduce uncertainty in this type of work. UPS’ collaboration helped reduce uncertainty in the total inventory from 33% to less than 1%.

Curb Occupancy Study

This study gives the city on-the-ground data on the current use and operational capacity of the curb for commercial vehicles, documenting vehicle parking behavior in a three-by-three city block grid around each of five prototype Center City buildings: a hotel, a high-rise office building, an historical building, a retail center, and a residential tower. These buildings were intentionally chosen to deepen the city’s understanding of the Center City; they were part of UFL’s earlier SDOT-sponsored research tracking how goods move vertically within a building in the Final 50 Feet of the goods delivery system.

Significantly, this study captured the parking behavior of commercial vehicles everywhere along the curb as well as the parking activities of all vehicles (including passenger vehicles) in commercial vehicle loading zones (CVLZs.) The research team documented: (1) which types of vehicles parked in CVLZs and for how long, and; (2) how long commercial vehicles (CVs) parked in CVLZs, in metered parking, and in passenger load zones (PLZ) and other unauthorized spaces. (Passenger vehicles in this study were not treated as commercial vehicles, due to challenges in systematically identifying whether passenger vehicles were making deliveries or otherwise carrying a commercial permit.)

Key Findings from Curb Occupancy Study

  1. Commercial and passenger vehicle drivers use CVLZs and PLZs fluidly: commercial vehicles are parking in PLZs and passenger vehicles are parking in CVLZs.
  2. Most commercial vehicle (CV) demand is for short-term parking: 15 or 30 minutes.
  3. Thirty-six percent of the total CVs parked along the curb were service CVs, showing the importance of factoring their behavior and future demand into urban parking schemes.
  4. Forty-one percent of commercial vehicles parked in unauthorized locations. But a much higher percentage parked in unauthorized areas near the two retail centers (55% – 65%) when compared to the predominantly office and residential areas (27% – 30%). The research team found that curb parking behavior is associated with granular, building-level urban land use. This occurred even as other factors such as the total number, length and ratio of CVLZs versus PLZs varied widely across the five study areas.

Seattle Municipal Tower Common Carrier Locker Pilot

The UFL’s 2017 research (The Final 50 Feet Urban Goods Delivery System Research Scan and Data Collection Project) documented that of the 20 total minutes delivery drivers spent on average in the 62-story Seattle Municipal Tower, 12.2 of those minutes were spent going floor-to-floor in freight elevators and door-to-door to tenants on multiple floors. The UFL recognized that cutting those two steps from the delivery process could slash delivery time in the Tower by more than half—which would translate into a substantial reduction in truck dwell time.

This report provides compelling evidence of the effectiveness of a new urban goods delivery system strategy: common carrier lockers that create parcel delivery density and provide secure delivery locations in public spaces. Parcel lockers are widely available secure, automated, self-service storage systems that are typically owned by a single retailer or delivery firm and placed inside private property. In contrast, common carrier lockers are open to multiple retailers and delivery carriers. This pilot, which placed a common carrier locker system in the 62-floor Seattle Municipal Tower for ten days in spring 2018, was intentionally carried out in a public space.

Key Findings from Seattle Municipal Tower Common Carrier Locker Pilot

The common carrier locker both reduced total delivery time by 78% when compared to traditional floor-to-floor, door-to-door delivery method and cut the number of failed first parcel deliveries to zero.