Skip to content

Analysis of Parking Utilization Using Curb Parking Sensors (Task Order 10)

Start Date: December 2021
Funding: City of Seattle Department of Transportation (SDOT)
Project Budget: $32,000
Principal Investigator(s): Dr. Anne Goodchild
Description:

In a Department of Energy-funded project led by the Urban Freight Lab, a network of parking occupancy sensors was installed in a 10-block study area in the Belltown neighborhood of Seattle, Washington. The study aimed at improving commercial vehicle delivery efficiency generating and providing real-time and future parking information to delivery drivers and carriers. This project will build upon the existing sensor network and the knowledge developed to explore how historical parking occupancy data can be used by urban planners and policymakers to better allocate curb space to commercial vehicles. The proposed project will use data from the existing sensor network and explore the relationship between the built environment (location and characteristics of establishments and urban form) and the resulting occupancy patterns of commercial vehicle load zones and passenger load zones in the study area.

Task 1 – Gather public data sources

Using public data sources (e.g. SDOT open data portal and Google Maps Places) the research team will obtain data on buildings and business establishments located in the Belltown study area (1st to 3rd Ave and Battery to Stewart Street). Data will include the location of business establishments, building height, land use, and estimates of the number of residents per building.

Task 2 – Analyze sensor data and estimate parking events

The research team will retrieve and process 1-year historical sensor data from the sensor network deployed in the study area. Sensor data is not directly usable as sensors are placed every 10 feet and a vehicle parking in a curb space might activate more than one sensor. Therefore, the research team will develop an algorithm that takes as input raw sensor data and gives as output estimate individual parking events, each consisting of a start time, curb space, and parking dwell time. The algorithm will be validated and algorithm performance will be reported.

Task 3 – Estimate parking utilization for each curb parking space

Using the estimated parking events obtained from task 2, the research team will analyze parking patterns and estimate total parking utilization for each curb parking space over time.

Task 4 – Design and perform an establishment survey

The research team will design an establishments survey to gather data on opening times, number of employees, type of business, and number of trips generated by business establishments in the study area. The survey will then be deployed and data will be collected for the business establishments in the study area. Descriptive statistics will be obtained characterizing the demand of freight trips generated by business type in the study area.

Task 5 – Analysis of parking utilization

The research team will perform statistical modeling to understand factors affecting curb space utilization in relationship with the location and characteristics of individual buildings and business establishments. The output of this effort is twofold: first, the analysis will obtain the factors that best explain the observed variability in curb parking demand, second, the analysis will obtain a model that can be used to predict future curb space demand.

Task 6 – Dissemination of findings and recommendations

A final report containing the result from the collection, processing, and analysis of the sensors data and establishment survey data will be drafted and published.

Expected outcomes

  • Descriptive time and spatial analysis of commercial vehicle load zone and passenger load zone utilization
  • Understand the impact of different establishments’ location and characteristics on commercial vehicle load zone and passenger load zone utilization
  • Discussion of policy implications for commercial vehicle load zones and passenger load zones allocation and time restrictions