With ongoing population growth and rapid development in cities, the demand for goods and services has seen a drastic increase. Consequently, transportation planners are searching for new ways to better manage the flow of traffic on existing facilities, and more efficiently utilize available and unused capacity. In this research, a lane management strategy that allows freight vehicles to use bus-only lanes is empirically evaluated in an urban setting. This paper presents an analysis of data that was collected to evaluate the operational impacts of the implementation of a freight and transit (FAT) lane, and to guide the development of future FAT lane projects by learning from the case study in Seattle, U.S. The video data was converted to vehicle counts, which were analyzed to understand the traffic impacts and used to construct a discrete choice model. The analysis shows that transit buses used the FAT lane 96% of the time, and authorizing trucks to use the lane did not affect that lane choice. Trucks used the FAT lane, but their utilization decreased with increasing numbers of buses in the FAT lane. Instead of higher rates of trucks, unauthorized vehicles, such as passenger cars and work vans, increasingly used the FAT lane during congestion. As a result of their differing schedule patterns, trucks and buses used the FAT lane at complementary times and trucks showed relatively low volumes in the FAT lane. Overall, the results are promising for a lane management strategy that may improve freight system performance without reducing transit service quality.
Gunes, S., Goodchild, A., Greene, C., & Nemani, V. (2021). Evaluating Traffic Impacts of Permitting Trucks in Transit-Only Lanes. Transportation Research Record. https://doi.org/10.1177/03611981211031888