
Transport Reviews

ISSN: 0144-1647 (Print) 1464-5327 (Online) Journal homepage: www.tandfonline.com/journals/ttrv20

The state of modelling for evaluating health
equity impacts of freight emissions

Zhengtao Qin, Anne Goodchild, Travis Fried, Sarah Dennis-Bauer & Quan
Yuan

To cite this article: Zhengtao Qin, Anne Goodchild, Travis Fried, Sarah Dennis-Bauer & Quan
Yuan (09 Oct 2025): The state of modelling for evaluating health equity impacts of freight
emissions, Transport Reviews, DOI: 10.1080/01441647.2025.2566679

To link to this article:  https://doi.org/10.1080/01441647.2025.2566679

Published online: 09 Oct 2025.

Submit your article to this journal 

Article views: 66

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ttrv20

https://www.tandfonline.com/journals/ttrv20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01441647.2025.2566679
https://doi.org/10.1080/01441647.2025.2566679
https://www.tandfonline.com/action/authorSubmission?journalCode=ttrv20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=ttrv20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/01441647.2025.2566679?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/01441647.2025.2566679?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/01441647.2025.2566679&domain=pdf&date_stamp=09%20Oct%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/01441647.2025.2566679&domain=pdf&date_stamp=09%20Oct%202025
https://www.tandfonline.com/action/journalInformation?journalCode=ttrv20


The state of modelling for evaluating health equity impacts of 
freight emissions
Zhengtao Qina,b, Anne Goodchildb, Travis Friedb, Sarah Dennis-Bauerb and 
Quan Yuana,c

aKey Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai, 
People’s Republic of China; bDepartment of Civil and Environmental Engineering, University of Washington, 
Seattle, WA, USA; cUrban Mobility Institute, Tongji University, Shanghai, People’s Republic of China

ABSTRACT  
Evaluating health equity impacts of freight emissions is crucial for 
developing a sustainable and just freight system. It is a complex 
process that requires interdisciplinary knowledge, including 
transportation, environment, and public health. Full-chain 
simulation is an important approach for forecasting freight 
planning outcomes. However, a systematic framework that 
integrates available models in full-chain and is specifically designed 
for the freight sector has not been developed. We review 36 
empirical studies covering this interdisciplinary topic, and 
summarise the commonly used models. We find that EMission 
FACtor (EMFAC) and Motor Vehicle Emission Simulator (MOVES) 
models are commonly used to estimate freight vehicle emissions, 
with their outputs serving as inputs for air quality models, such as 
Community Multiscale Air Quality Model (CMAQ) or Intervention 
model for air pollution (InMAP). To estimate the health effects, 
concentration-response (C-R) functions, combined with static or 
dynamic demographic and socioeconomic data, are used to 
quantify the relationship between changes in pollutant 
concentrations and health outcomes. Then, disparity analysis relies 
on the assumption of age-specific C-R functions and examines 
statistical differences between demographic groups – including 
racial/ethnic groups, income levels, age groups, and other 
vulnerable communities. This study comprehensively outlines this 
state-of-the-art, integrated framework identified through the 
synthesis of this interdisciplinary literature. This framework can 
support future researchers in this field and policymakers.
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1. Introduction

Diesel heavy-duty trucks and drayage trucks emit significant amounts of nitrogen oxides 
(NOx), particulate matter (PM), and black carbon (BC), posing serious risks to respiratory 
and circulatory health (Koolik et al., 2024; Slaughter et al., 2005; Thind et al., 2022). 
Despite heavy-duty vehicles representing about 10% of total traffic volume, they contrib
ute over 50% of tailpipe NOx emissions in the US (Badshah et al., 2019). Additionally, 
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environmental justice (EJ) research underscores that the disproportionate placement of 
warehousing facilities in neighbourhoods with high percentages of socially disadvan
taged populations forces these communities to bear a greater burden of air pollution 
from diesel freight vehicles (Minet et al., 2020; Yuan, 2018). This disparity is particularly 
evident in California, where, despite overall reductions in air pollution, exposure inequal
ities persist, especially in areas with high levels of heavy-duty truck traffic (Koolik et al., 
2024). Given freight’s contribution to traffic-related air pollution and its different operat
ing characteristics compared to passenger transport, freight emissions deserve special 
attention. Therefore, it is crucial for methods that evaluate the health effects of freight 
emissions to also examine how these impacts compare across populations and 
geographies.

Empirical field studies are one approach, and essential to evaluating these impacts. 
However, a simulation approach is a complementary alternative, allowing for the explora
tion of unobserved scenarios. Simulation approaches also serve as valuable tools to fore
cast freight planning outcomes (Tavasszy et al., 2012; Tavasszy & de Bok, 2023). Although 
previous literature reviews have summarised related models involving freight demand 
modelling (Tavasszy et al., 2012; Tavasszy & de Bok, 2023; Zhou & Dai, 2012), vehicle emis
sion estimation (Mądziel, 2023), air quality modelling (Gilmore et al., 2019; Khan & Hassan, 
2020), and exposure and health effect estimation (HEI, 2022; Mueller et al., 2015; Ramani 
et al., 2019; Vallamsundar et al., 2016), few studies have reviewed simulation approaches 
across the full chain to assess the health equity impacts of freight emissions. Moreover, 
while some studies have integrated the key analytical stages for such evaluation (Bickel 
et al., 2006; Lefebvre et al., 2013), a systematic framework that integrates available 
models and is specifically designed for the freight sector has not yet been developed.

This paper outlines the analytical stages in evaluating the health equity impacts of 
freight emissions. By reviewing the current state of research in this field, it provides a com
prehensive summary of the methods and tools commonly used at each stage and pre
sents a framework specific to freight emissions. We will achieve the following goals: 

(1) define the essential contributors to health equity impacts of freight, providing a foun
dation for understanding the factors involved;

(2) outline the key analytical stages to evaluate the health equity impacts of freight emis
sions, and overview the commonly used models in each stage;

(3) summarise specific methods and data required of each stage within a framework for 
effectively evaluating the health equity impacts of freight emissions.

The paper is structured as follows: Section 2 describes the analytical stages of evaluat
ing health equity impacts of freight emissions. Section 3 outlines the methodology. 
Section 4 presents results of previous research, and summarises their methods. Finally, 
Section 5 discusses the integrated framework, and the implication and application of 
this research. Section 6 concludes the contributions and limitations of this study.

2. Stages of evaluating health equity impacts of freight emissions

Health equity is broadly defined as the principle that everyone has a fair opportunity to 
reach their full health potential, without distinction based on race, ethnicity, 
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socioeconomic background, physical or mental abilities, gender, income, or other social 
factors (Rojas-Rueda et al., 2024). Transportation systems can produce harmful external
ities, such as air pollution, noise pollution, and traffic injury, as well as co-benefits, such 
as physical activity in transportation (Cole et al., 2019). This study, however, narrows its 
focus to the health equity impacts of freight emissions.

Evaluating the health equity impacts of freight emissions is a complex process, invol
ving multiple stages. Based on recent review studies related to health and health equity 
impacts of freight and general transport (Bickel et al., 2006; Glazener et al., 2021; Patton et 
al., 2024; Ramani et al., 2019; Vallamsundar et al., 2016), this evaluation process can be 
divided into four analytical stages (see Figure 1). However, the models and tools available 
at each stage are not yet unified.

The first stage is freight demand modelling, involving freight trip generation and traffic 
assignment. It aims at simulating the activities of freight vehicles on the road network 
(Tavasszy et al., 2012), which helps identify the location and intensity of freight emissions.

The second stage, emissions and air quality modelling, aims at assessing the air pol
lution resulting from freight emissions. It comprises two interconnected steps: emission 
estimation and air pollution concentration estimation. Emissions models estimate air pol
lutants emitted by freight vehicles based on their activity (McNeil et al., 2023; Park, 2022; 
Xiao et al., 2024; Zhang et al., 2019). Air quality modelling simulates the dispersion and 
chemical transformation of the pollutants in the atmosphere to predict concentrations 
considering the influence of the built environment and atmospheric conditions on pollu
tant behaviour (Khan & Hassan, 2020; Matthias et al., 2018).

The third stage is health effect estimation, which assesses how these air pollution con
centrations translate to population exposure and subsequent health outcomes (e.g. 
disease cases and mortality). This stage quantifies population exposure by integrating 
air pollution data with population distribution data. Epidemiological effect estimates 
are used to estimate the health risks associated with these air pollution exposures (Brus
selaers et al., 2023a; Mommens et al., 2019; Torbatian et al., 2024).

Figure 1. Analytical stages of evaluating health equity impacts of freight emissions.
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Vulnerable groups, such as the elderly and children, face higher health risks due to 
factors like chronic lung, asthma, heart conditions in older adults, and the greater air 
intake per pound of body weight in children and infants compared to adults (Brusselaers 
et al., 2023a; Slaughter et al., 2005). Additionally, areas near freight facilities and corridors 
experience higher exposure to freight emissions compared to other communities 
(Ramirez-Ibarra & Saphores, 2023; Wen et al., 2024), making residents at higher health 
risk. Therefore, the fourth stage considers the age-specific mortality and morbidity likeli
hood, and analyses the health disparity across different population groups and spatial 
units (Lathwal et al., 2022; Thind et al., 2022; Torbatian et al., 2024).

3. Methodology

The literature on the health equity impacts of freight emissions uses varying terminology 
to describe these impacts. To ensure a thorough review, this study adopts a broad search 
strategy using key terms frequently utilised in the field, including “health equity”, “health 
disparity”, “health effect”, “air quality impact”, “environmental impact”, “exposure assess
ment”, and “environmental justice”. These terms are combined with “truck emissions” to 
guide the literature search.

To ensure all relevant studies were identified, we conducted systematic searches across 
leading scientific databases, including Google Scholar, Elsevier Scopus, and Web of Science. 
After removing literature that did not refer to at least one key term, we included 85 studies 
in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
workflow (see Figure 2). Following the removal of duplicate records, 84 studies proceeded 
to title, abstract, and full-text screening. During the title and abstract screening, we exclude 
studies that did not involve freight or not assessing health and equity impacts of freight 
emissions, eliminating 31 articles. During the full-text screening, studies were excluded 
if: (1) the health and equity impacts were not directly linked to freight vehicle emissions 
(n = 3); (2) the analysis was purely theoretical or literature-based, lacking a modelling 
approach (n = 5); or (3) disparity analysis used the field observed data, and does not 
involve simulation approaches (n = 9). Ultimately, we include 36 articles for analysis.

While some studies cover only partial stages of the full process, such as from freight 
demand modelling or air quality modelling to health effect estimation, they also 
provide the references to the full modelling process. Therefore, we categorised the 
selected studies according to their analytical stage (see Table 1).

4. Results

4.1. Assessing contributors to health equity impacts of freight emissions

To explore how freight contributes to health equity impacts, we focus on the following 
aspects: (1) specific air pollutants, (2) the health endpoints (e.g. mortality, cardiovascular 
and respiratory disease), and (3) disparities in population groups and spatial units.

4.1.1 Air pollutants
PM2.5 is the most widely studied pollutant for health effects from transportation sources 
(n = 26) due to its severe health risks. Hennessy et al. (2024a) found that the PM2.5 from 
diesel truck fleet contributed to 1,484-3,336 premature deaths annually in the United 
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States. Ramirez-Ibarra and Saphores (2023) found that regulations and technological 
advancements could prevent 377 premature deaths and 13,326 asthma attacks annually 
from PM2.5 of drayage trucks operating at the Ports of Los Angeles and Long Beach in 
Southern California.

NOx is the second most studied air pollutant (n  =  17), and other air pollutants, such as 
SOx, O3, VOCs, and NH3 have also been studied (n  =  10). Mommens et al. (2019) estimated 
a total of €51.692 is generated on a daily basis for PM and NOx emissions from freight 
transport in the Brussels Metropolitan Region. Similarly, Brusselaers et al. (2023a) found 
that vulnerable populations in the Brussels-Capital Region face daily health costs of 
€37,000 due to PM and NOx emissions from freight vehicles. Liu et al. (2019) found that 
in 2010, emissions from urban short-haul trucks in the United States resulted in the follow
ing mortality per kiloton: 1.9 from VOCs, 28 from NH3, and 3.7 from SOx. The health 

Figure 2. PRISMA workflow for reviewing freight health equity literature.
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impacts of these three air pollutants are primarily attributable to exposure to secondary 
PM2.5 formed through atmospheric chemical reactions involving these precursors, rather 
than direct exposure to the gaseous pollutants themselves.

4.1.2 Health endpoints
Research on the health effect and health equity impact of freight emissions highlight the 
significant role of air pollutants in contributing to morbidity and mortality. Several studies 
(n = 15) identified premature deaths as a major health endpoint linked to freight-related 
air pollution. Ramirez-Ibarra and Saphores (2023) found that air pollution from diesel 
heavy-duty drayage trucks serving the Ports of Los Angeles and Long Beach in Southern 
California is associated with 483 premature deaths in 2012.

Four studies considered the association between freight vehicle emissions and respir
atory diseases, such as asthma and chronic bronchitis (Brusselaers et al., 2023a; Lee et al., 
2009; Ramirez-Ibarra & Saphores, 2023; Torbatian et al., 2024). For example, Torbatian et 
al. (2024) pointed out that under the heavy-duty truck electrification scenario, annual 
cases of adult chronic bronchitis decrease by over 200, while respiratory-related emer
gency room visits decline by nearly 45 cases in Greater Toronto and Hamilton Area.

Moreover, four studies have considered the impact of freight vehicle emissions on car
diovascular conditions, such as heart rhythm disturbances and ischaemic heart disease 
(Brusselaers et al., 2023a; Mommens et al., 2019; Ramirez-Ibarra & Saphores, 2023; Torba
tian et al., 2024). Ramirez-Ibarra and Saphores (2023) found that heavy-duty drayage 
trucks in Southern California were linked to 139 cardiovascular cases in 2012. Brusselaers 
et al. (2023a) showed that electrifying heavy-duty trucks leads to the largest estimated 
reduction in cardiovascular-related cases, including emergency room visits and hospital 
admissions, compared to medium-duty and light-duty trucks in Brussels-Capital Region.

Table 1. Classification of selected studies (N = 36).

Studies included
Study 
count Analytical stages involved

Hartle et al. (2022) 1 Freight demand modelling 
Air quality modelling

Lee et al. (2012); Lee et al. (2009); Liu et al. (2019); Mommens et al. (2019) 4 Freight demand modelling 
Air quality modelling 
Health effect estimation

Sahin et al. (2023); Zalzal and Hatzopoulou (2022) 2 Freight demand modelling 
Air quality modelling 
Disparity analysis

Brusselaers et al. (2023a, 2023b); Ramirez-Ibarra and Saphores (2023); 
Torbatian et al. (2024)

4 Freight demand modelling 
Air quality modelling 
Health effect estimation 
Disparity analysis

Bickford et al. (2014); Dong et al. (2018); Hu et al. (2022); Kijewska et al. (2016); 
Malik et al. (2019); Oranges Cezarino et al. (2021); Seo et al. (2013)

7 Air quality modelling

Luo et al. (2022); Mac Kinnon et al. (2021); McNeil et al. (2023); Minet et al. 
(2020); Moretti et al. (2021); Pan et al. (2019); Ross et al. (2015); Tong et al. 
(2021)

8 Air quality modelling 
Health effect estimation

Ma et al. (2023); Wen et al. (2024); Xiao et al. (2024) 4 Air quality modelling 
Disparity analysis

Camilleri et al. (2023); Hennessy et al. (2024a); Hennessy et al. (2024b); 
Lathwal et al. (2022); Park (2022); Tessum et al. (2019); Thind et al. (2022)

7 Air quality modelling 
Health effect estimation 
Disparity analysis
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4.1.3 Disparities in population groups and spatial units
Previous studies related to health equity impact of freight also focused on the health dis
parity across racial groups (Hennessy et al., 2024a; Lathwal et al., 2022; Tessum et al., 2019; 
Thind et al., 2022), income level (Hennessy et al., 2024a), age groups (Brusselaers et al., 
2023a; Ross et al., 2015), and communities (Ramirez-Ibarra & Saphores, 2023; Torbatian 
et al., 2024), highlighting health disparities within different population groups and 
spatial units.

Seven studies focused on the disparities across racial groups (Camilleri et al., 2023; Hennessy 
et al., 2024a; Hennessy et al., 2024b; Lathwal et al., 2022; Ross et al., 2015; Tessum et al., 2019; 
Thind et al., 2022). They commonly confirmed that Black and Hispanic/Latino populations bear 
a disproportionate burden of air pollution from freight emissions, with evidence from case 
studies in Chicago, Georgia, California, and nationwide analyses across the U.S.

Health disparities also vary by income levels and age groups. Low-income populations 
generally face higher health risks from freight-related air pollution compared to their 
high-income counterparts (Hennessy et al., 2024a; Park, 2022). Brusselaers et al. (2023a) 
found that vulnerable population groups, including toddlers (aged 0-3), school children 
(aged 3-18), and elderly individuals (aged 65+) bear €34,517.47 to €40,047.13 in daily 
health costs, accounting for 60% of the total costs, despite representing only 25.34% of 
the total population of Brussels Capital Region.

Areas near freight facilities and corridors often bear a disproportionate share of the 
environmental harms caused by freight activities, worsening social health inequities (Tor
batian et al., 2024; Wen et al., 2024). Studies on the health equity of freight also investigate 
health disparities at various spatial units, such as community level (Ma et al., 2023; 
Ramirez-Ibarra & Saphores, 2023; Torbatian et al., 2024; Wen et al., 2024). In some disad
vantaged communities, a higher number of annual asthma exacerbation cases and pre
mature deaths have been linked to emissions from heavy-duty diesel trucks (Ramirez- 
Ibarra & Saphores, 2023; Wen et al., 2024).

4.2. Freight demand modelling

Freight vehicle traffic flow is a critical input for estimating freight vehicle emissions. 
Several studies have utilised the Freight Analysis Framework and California Air Resources 
Board’s EMissions FACtor (EMFAC) fleet database to directly capture the truck traffic flows 
on road networks (Bickford et al., 2014; Hennessy et al., 2024a; Hennessy et al., 2024b; 
Lathwal et al., 2022; McNeil et al., 2023; Ross et al., 2015; Thind et al., 2022; Tong et al., 
2021; Wen et al., 2024). In addition, some studies (n = 5) used observed monitoring 
data (e.g. GPS data, vehicle telematics, and entry point monitoring) to estimate the 
freight traffic flow within specific study areas (Brusselaers et al., 2023b; Dong et al., 
2018; Hu et al., 2022; Oranges Cezarino et al., 2021; Pan et al., 2019). However, these 
studies often lack the incorporation of freight vehicle traffic simulations. Hence, we 
emphasise those studies employing simulation approaches to estimate the freight 
traffic flow (see Table 2).

4.2.1 Freight trip generation
According to Zhou and Dai (2012), freight demand models can be classified as five groups: 
(i) Growth-factor and Origin/Destination (O/D) synthesis, (ii) Commodity-based, (iii) Trip or 
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vehicle-based, (iv) Tour-based, and (v) Logistics or supply-chain. In the studies of health 
equity impacts of freight emissions, trip-based models and commodity-based models 
are broadly applied to generate freight demand. Trip-based models typically use zonal 
economic and land use attributes to directly estimate the total freight trips. In contrast, 
commodity-based models concentrate on freight flows or commodity movements 
between traffic analysis units.

Trip-based models are commonly used to generate freight trips (n = 6). Key variables 
such as establishment counts, employment, and special generators were incorporated to 
directly predict zonal 24-hour trip generation for light, medium, and heavy trucks. For 
example, Hartle et al. (2022) used land use data and establishments data to estimate 
the number of freight trip attraction (FTA) and freight trip production (FTP) for each 
establishment category in polygon, and then convert business FTA and FTP to the 
number of different types of trucks. Alternatively, Ramirez-Ibarra and Saphores (2023), 
Sahin et al. (2023), Lee et al. (2012), and Lee et al. (2009) did not employ specific 
methods to estimate freight trip generation. Instead, they extracted freight O/D pairs 
from broader regional traffic trip simulations, such as the Southern California Association 
of Governments regional trip-based model and the Atlanta Regional Commission’s 
Activity-Based Model.

Three studies used commodity-based models to estimate the freight demand for 
various commodity types, which were then combined with vehicle fleet data to estimate 
the corresponding freight trips (Brusselaers et al., 2023a, 2023b; Liu et al., 2019; Mommens 
et al., 2019). For example, Liu et al. (2019) estimated the commodity shipment demand 
and combined it with the vehicle fleet composition to estimate the freight trips in 
long-haul and short-haul scenarios. Mommens et al. (2019) employed socio-economic 
data, including employment, ground surface, and population density, to generate ship
ments of specific commodity and cargo type. Freight demand was then used as input 
data for the Transport Agent-Based Model (TABM) to simulate individual vehicle activity.

4.2.2 Traffic assignment and simulation
Traffic assignment methods are used to estimate traffic flow based on O-D trip data. They 
include static and dynamic traffic assignment methods, which differ in loading traffic 
flows on road networks, either with or without considering time variations (Saw et al., 
2015). In contrast, route-based models calculate possible routes within the network 
and directly distribute traffic flows along possible routes (Han, 2007). Agent-based 
models estimate commercial vehicle traffic flow by simulating individual vehicle activities. 
These models offer higher spatial and temporal resolution than traditional assignment 
and route-based models, enabling more detailed information of vehicles. Using these cat
egories, we summarise the methods widely used to estimate freight vehicle traffic flows in 
empirical studies.

Traditional traffic assignment methods rely on freight trip generation and trip distri
bution to allocate freight traffic flow across road networks, either statically or dynamically 
(Ramirez-Ibarra & Saphores, 2023; Torbatian et al., 2024). Torbatian et al. (2024) employed 
linear regression for freight trip generation, a standard doubly constrained gravity model 
for trip distribution, and a static multiclass user equilibrium assignment approach to allo
cate freight traffic flow at the hourly link level. In contrast, Ramirez-Ibarra and Saphores 
(2023) used dynamic traffic assignment (DTA) for traffic allocation at the link level.
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The route-based methods use routing algorithms (e.g. shortest-path algorithms and 
asymptotic vehicle routing models) to allocate traffic flow to possible routes. Hartle et 
al. (2022) assumed that truck drivers follow the shortest path and allocate truck flow 
across the road network. Liu et al. (2019) applied an asymptotic vehicle routing model 
to distribute shipment flows, and then subsequently incorporate vehicle fleet compo
sition to estimate freight traffic flows at the link level.

Compared to traditional traffic assignment methods and route-based methods, agent- 
based traffic models offer higher spatial and temporal output resolution. These models 
focus on individual vehicles, simulating their trajectories at minute or even second- 
level intervals (Brusselaers et al., 2023a; Mommens et al., 2019). Brusselaers et al. 
(2023a) used the MATSim tool to simulate the individual freight vehicles entering or 

Table 2. Examples of studies estimating freight traffic flow.

Source Freight segment
Freight trip 
generation

Traffic assignment and 
simulation

Output spatial- 
temporal resolution

Torbatian et al. 
(2024)

Light-, medium-, and 
heavy-duty trucks

Trip-based 
model

. Static Traffic Assignment 
Method

. Multiclass user equilibrium 
assignment

. Spatial: link level

. Temporal: hourly

Ramirez-Ibarra 
and Saphores 
(2023)

Heavy-duty drayage 
trucks

Trip-based 
model

. Dynamic Traffic Assignment 
Method

. Use TransModeler to simulate 
network traffic flow

. Spatial: vehicle- 
specific level

. Temporal: second- 
by second

Sahin et al. (2023) Light-duty, medium- 
duty, heavy-duty 
vehicles

Trip-based 
model

. Transport Agent-Based 
Model

. Use Polaris to simulate 
vehicle trajectories

. Spatial: vehicle- 
specific level

. Temporal: 6 s

Hartle et al. (2022) Last mile delivery Trip-based 
model

. Route-based approach

. Use QGIS to calculate travel 
distance based on shortest 
path

. Spatial: link level

. Temporal: daily

Brusselaers et al. 
(2023a, 2023b)

Light-duty vehicles, 
rigid trucks, and 
truck-trailer 
combinations

Commodity- 
based model

. Transport Agent-Based 
Model

. Use MATSim to simulate 
vehicle activity

. Spatial: vehicle- 
specific level

. Temporal: 15 min

Mommens et al. 
(2019)

Vans, light-duty, and 
heavy-duty vehicles

Commodity- 
based model

. Transport Agent-Based 
Model

. Use MATSim to simulate 
vehicles activity

. Spatial: vehicle- 
specific level

. Temporal: 30 min

Liu et al. (2019) Long-haul and short- 
haul trucks

Commodity- 
based model

. Route-based approach

. Asymptotic vehicle routing 
model

. Spatial: link level

. Temporal: yearly

Lee et al. (2012, 
2009)

Medium-duty trucks 
and heavy-duty 
trucks

Trip-based 
model

. Dynamic Traffic Assignment 
Method

. Use TransModeler to simulate 
network traffic flow

. Spatial: vehicle- 
specific level

. Temporal: second- 
by-second

Zalzal and 
Hatzopoulou 
(2022)

Light-duty vehicle and 
trucks

/ . Use Gradient Boost Models 
(XGBoost models) to predict 
the truck counts and traffic 
conditions

. Spatial: link level

. Temporal: yearly
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leaving network links, and aggregated to 15-minute time intervals for computational pur
poses. Mommens et al. (2019) similarly simulated the freight vehicle movements between 
4,933 TAZs in the Belgian territory, and then counted the traffic flow at 30-minute inter
vals. In addition, TransModeler simulation tool can perform the DTA and generate the 
vehicle trajectories second-by-second, providing an integrated approach for traffic assign
ment and simulation (Lee et al., 2009; Lee et al., 2012; Ramirez-Ibarra & Saphores, 2023).

4.3. Emission and air quality modelling

Based on the output from freight demand modelling, including traffic condition and 
traffic volumes, emission models are used to estimate freight vehicle emissions. Air dis
persion processes determine how pollutants spread, dilute, and transform in the atmos
phere, influencing their spatial and temporal distribution. These air dispersion processes 
are important to capture to estimate how vehicle emissions translate to air pollution con
centrations. In this section, we illustrate the parameters of the models and tools com
monly used to estimate emissions and air pollution concentrations.

4.3.1 Emissions estimation
Given the input size of emission models, emission models are commonly classified into 
two categories: macroscopic models and microscopic models (Zhang et al., 2022). The 
summary of emission models used in previous studies is presented in Table 3. Macro
scopic models, such as HBEFA, GREET, MOBILE, and COPERT are typically designed to esti
mate the amount of emissions over a broader spatial and temporal scale, such as an entire 
city, region, or road network for a given year. They usually rely on average travel speed to 
estimate the emission factors (in the unit of grams per mile), overlooking different driving 
behaviours in the same average travel speed (Mądziel, 2023). In contrast, microscopic 
models, such as CMEM, focus on specific driving conditions. These models incorporate 
parameters like instantaneous speed and acceleration to estimate real-time pollutant 
emission rates (grams per second), which are then converted to emission factors in 
grams per mile (Mądziel, 2023) (Camilleri et al., 2023; Pan et al., 2019; Zalzal & Hatzopou
lou, 2022). In addition, some emission models, such as EMFAC and MOVES, integrate mul
tiple spatial scales, allowing applications from vehicle level to regional level. They can be 
applied under macroscopic settings by using average travel speeds, or under microscopic 
settings when detailed traffic conditions and data are available.

Among these emission models, EMFAC and MOVES are widely used in studies related 
to health equity impact of freight. EMFAC is the recommended model for use in California, 
while MOVES is designated for a broader range of locations across the United States, 
including District of Columbia, Puerto Rico, and the U.S. Virgin Islands. Seven studies 
utilise the EMFAC model to estimate the emission factors of heavy-duty vehicles. In 
these studies, link-based traffic activities (e.g. average traffic speed), vehicle characteristics 
(e.g. vehicle type and model year), and fuel type are the important inputs to determine 
exhaust emissions factors.

The MOVES model is also widely used (n = 7). This model is effective to provide detailed 
emission estimates when integrated with second-by-second vehicle speed and accelera
tion data from microscopic traffic simulations. Lee et al. (2012) and Ramirez-Ibarra and 
Saphores (2023) employed the TransModeler tool to generate these parameters as 
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input into the MOVES model, enabling a detailed estimation of truck emissions at the 
microscopic level. In contrast, Camilleri et al. (2023), Torbatian et al. (2024) and Zalzal 
and Hatzopoulou (2022) utilised the model’s default driving cycles to estimate average 
emission factors for average speeds in specific road types. Additionally, the MOVES 
model can estimate idling emission factors in grams per hour (g/hr). Park (2022) used 
MOVES to assess idling emissions from port drayage trucks at the Port of New York and 
New Jersey, reporting NOx and PM2.5 emission factors of 52.9 and 4.281 g/hr, respectively.

Table 3. Summary of emission models used in previous research.
Model scale Emission model Main input parameters Sources

Macroscopic Handbook of Emission 
Factors for Road Transport 
(HBEFA)

. Vehicle type, fuel type, 
model year

Brusselaers et al. (2023a, 2023b); 
Kijewska et al. (2016); Mommens 
et al. (2019)

Greenhouse Gases, 
Regulated Emissions, and 
Energy Use in 
Technologies (GREET)

. Vehicle type, engine type; 
Technology level, fuel 
economy

. Temperature, humidity

Lathwal et al. (2022); McNeil et al. 
(2023); Sahin et al. (2023); Thind 
et al. (2022); Tong et al. (2021)

Mobile Source Emission 
Factor Model (MOBILE)

. Vehicle type, fuel type, 
model year

. Average speed, driving 
cycle, months and times 
of day

. Temperature, humidity

Bickford et al. (2014)

Computer Programme to 
Calculate Emissions from 
Road Transport (COPERT)

. Vehicle type, fuel type, 
load, emission standard

. Average speed, road type, 
peak or off-peak travel

Dong et al. (2018); Hu et al. (2022)

US National Emissions 
Inventory (NEI)

. Vehicle type, furl type, 
model year, spatial scale 
(national/state, county or 
tribe)

Ross et al. (2015); Tessum et al. 
(2019)

Microscopic Comprehensive Modal 
Emissions Model (CMEM)

. Vehicle type and age, 
load, fuel type, engine 
technology, model year

. Average speed, driving 
cycle

. Temperature, humidity, 
ambient pressure, wind 
velocity and direction

Lee et al. (2009)

Multi-scale 
(macroscopic 
and microscopic)

EMission FACtor (EMFAC) . Vehicle type and age, 
load, fuel type, model 
year

. Operating mode, average 
speed, road type

. Season or month, 
temperature, humidity

Hartle et al. (2022); Hennessy et al. 
(2024a); Hennessy et al. (2024b); 
Lee et al. (2009); Luo et al. 
(2022); Moretti et al. (2021); Wen 
et al. (2024)

Motor Vehicle Emission 
Simulator (MOVES)

. Vehicle type and age, fuel 
type, model year

. Average speed, road type, 
driving cycle, month and 
times of day

. Temperature, humidity

Camilleri et al. (2023); Lee et al. 
(2012); Pan et al. (2019); Park 
(2022); Ramirez-Ibarra and 
Saphores (2023); Torbatian et al. 
(2024); Zalzal and Hatzopoulou 
(2022)
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4.3.2 Air pollution concentration estimation
A wide variety of approaches and models are used to estimate the air pollution concen
trations. Among them, land use regression (LUR) models rely on statistical relationships 
between observed concentrations and spatial characteristics to estimate the concen
trations (Beelen et al., 2013). However, they require large amounts of data to develop 
robust results and cannot capture the underlying physical and chemical processes. As a 
result, most studies still prefer dispersion models for estimating air pollution concen
trations. Table 4 shows the air dispersion models commonly used in previous research. 
They fall into three categories: Gaussian models (e.g. R-LINE, C-LINE, CALPUFF, and the 
Gaussian Plume Model), chemical transport models (e.g. CMAQ, CAMx, and Polair3D), 
and reduced-complexity models (e.g. InMAP, EASIUR, and APEEP).

Gaussian models simulate physical dispersion processes and are broadly classified into 
steady-state and puff models. Steady-state models (e.g. R-LINE, C-LINE, and Gaussian 
Plume) assume continuous emissions and fixed meteorological conditions, making 
them computationally efficient and suitable for long-term average concentration esti
mates. Among them, Gaussian Plume models and R-LINE are mostly used. Gaussian 
Plume models are based on classic Gaussian theory, which assumes that pollution dis
persion follows a Gaussian distribution. These models require relatively simple meteoro
logical inputs, such as wind speed and direction. R-LINE focuses on road-based line source 
emissions modelling, and requires detailed meteorological conditions (e.g. temperature, 
wind speed, wind direction, surface friction velocity) and road geometry. It provides pol
lutant concentration estimates at specific sensitive receptor locations. The C-LINE model is 

Table 4. Summary of dispersion models used in previous research.
Type of model Emission model Input parameters Sources

Gaussian models R-LINE Traffic emissions, meteorology, 
road geometry

Luo et al. (2022); Ma et al. (2023); 
Moretti et al. (2021); Wen et al. 
(2024)

C-LINE Traffic composition and volume, 
meteorology

Ross et al. (2015)

California Puff Model 
(CALPUFF)

Traffic emissions, terrain coastal 
interactions, building downwash, 
and land use

Lee et al. (2012); Lee et al. (2009)

Gaussian Plume Model Traffic emissions, wind speed, wind 
direction, stability class

Brusselaers et al. (2023a, 2023b); 
Kijewska et al. (2016); 
Mommens et al. (2019); Xiao et 
al. (2024)

Chemical 
Transportation 
models

Community Multiscale 
Air Quality Model 
(CMAQ)

Traffic emissions, Emissions 
inventory, meteorology, land use, 
initial and boundary condition

Bickford et al. (2014); Camilleri et 
al. (2023); Mac Kinnon et al. 
(2021); Pan et al. (2019)

Polair3D Traffic emissions, Emissions 
inventory, meteorology, land use, 
initial and boundary condition, 
other emission source

Minet et al. (2020); Torbatian et 
al. (2024)

Reduced- 
complexity 
models

Intervention model for 
air pollution (InMAP)

Primary pollutants (SO2, NOx, NH3, 
VOC, PM2.5), emission source 
location, emission rate, 
meteorology, emission source 
height

Hennessy et al. (2024a, 2024b); 
Liu et al. (2019); McNeil et al. 
(2023); Ramirez-Ibarra and 
Saphores (2023); Tessum et al. 
(2019); Thind et al. (2022)

Estimating Air pollution 
Social Impact Using 
Regression (EASIUR)

Primary pollutants (SO2, NOx, NH3, 
PM2.5), emission source location, 
emission rate, meteorology, 
emission source height

Lathwal et al. (2022); Tong et al. 
(2021)
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similar to the R-LINE model in terms of input variables but is intended for broader geo
graphic areas, such as grids. In contrast, puff models (e.g. CALPUFF) represent pollutants 
as discrete puffs, enabling simulation of dynamic meteorology and complex terrains, 
though they require more detailed inputs and computational resources. However, they 
are more suitable for short-term or episodic assessments across diverse spatial and tem
poral scales.

Chemical transport models (CTM) account for the spatial and temporal distribution of 
pollutants and incorporate processes such as diffusion, chemical transformation, sedi
mentation, and secondary pollutant formation (Matthias et al., 2018; Tessum et al., 
2017). The CMAQ and Polair3D are the most commonly used models (n = 6). CMAQ sup
ports simulations from local (city-level) to national and even continental scales, whereas 
Polair3D focuses on smaller domains, making it more suitable for city – and regional-scale 
air quality assessments.

Given the complexity of CTM, reduced-complexity models (RCMs), such as InMAP, 
EASIUR, and APEEP, are used to reduce computational demands and user effort while 
maintaining predictive accuracy (Tessum et al., 2017). InMAP is the most commonly 
used RCM in this sample (n = 7). It allows estimating average annual air pollutants concen
trations at resolutions varying from 1 km x 1 km to 48 km x 48 km. EASIUR is limited to a 
coarser spatial resolution of 36 km x 36 km. Similarly, APEEP also operates at a county or 
state level, limiting its ability to capture fine-scale spatial variability.

Dispersion models require inputs such as traffic emissions, land use (e.g. land cover, 
surface roughness, heat exchange parameters), meteorological conditions (e.g. tempera
ture, wind speed, wind direction, surface friction velocity), and other pollution sources. 
Land use data are often obtained from global databases, such as USGS Land Cover, 
GLC2000, and MODIS. Meteorological data come from observational networks (e.g. 
SCAQMD, National Oceanic and Atmospheric Administration) or numerical models such 
as WRF, and estimates of other pollution sources typically rely on emission inventories 
processed with tools like SMOKE.

4.4. Health effect estimation

Exposure to PM2.5, NOx, and O3 are associated with increased mortality and morbidity 
from cardiovascular diseases, such as ischaemic heart disease, stroke, chronic obstructive 
pulmonary disease, and lung cancer (HEI, 2022; Patton et al., 2024). To estimate the health 
effects of freight emissions, previous studies (n = 16) commonly employed concentration– 
response (C-R) functions to quantify the relationship between changes in pollutant con
centrations and corresponding health endpoints.

Three studies assume the relationships between air pollution and mortality and mor
bidity are standard linear (Mommens et al., 2019; Ramirez-Ibarra & Saphores, 2023; Torba
tian et al., 2024). For example, Mommens et al. (2019) showed that, in the Brussels Capital 
Region, the rates of hospital emergency visits for conditions such as pneumonia, chronic 
obstructive pulmonary disease, ischaemic heart disease, and heart rhythm disturbances 
increase within a range of 0.4% to 1.2%.

Thirteen studies assumed a nonlinear (i.e. log-linear) relationship between mortality 
incidence and air pollutant concentrations (Brusselaers et al., 2023a; Camilleri et al., 
2023; Hennessy et al., 2024a; Hennessy et al., 2024b; Lee et al., 2012; Liu et al., 2019; 
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Mac Kinnon et al., 2021; McNeil et al., 2023; Minet et al., 2020; Pan et al., 2019; Tessum et 
al., 2019; Thind et al., 2022; Tong et al., 2021). The common log-linear C-R function used to 
estimate the relationship between changes in air quality and health endpoints is pre
sented in Equation (1).

Dy = (1 − exp(− bDx)) · y0 · Pop (1) 

In this equation, Dy is the change in health outcome, y0 is the baseline rate of the 
health outcome (i.e. the rate in the absence of increased air pollutant concentrations), 
b is the epidemiological hazard ratio associated with exposure to air pollution, Dx is 
the change in air pollutant concentrations (e.g. PM2.5 concentrations), and Pop is the 
size of the total affected population. Camilleri et al. (2023) assumed hazard ratios of 
1.04 per 10 μg/m3 for annual mean NO2, 1.03 per 5 μg/m3 for annual mean PM2.5.

Alternatively, Ross et al. (2015) used odds ratios to estimate the relative risks of diseases 
from freight exposures. Five studies employed approaches to indirectly assess the health 
effects of freight emissions without estimating mortality or morbidity. Four of these 
studies analyzed population spatial distribution to estimate exposure (Lee et al., 2009; 
Luo et al., 2022; Moretti et al., 2021; Park, 2022) while Lathwal et al. (2022) monetised 
health outcomes using marginal social cost assessments.

The spatial and temporal distribution of populations plays a critical role in health effect 
estimation. This involves static and dynamic approaches to estimate the exposure (Beckx 
et al., 2009; Bickel et al., 2006; Dons et al., 2011). Most studies (n = 33) rely on static 
approaches, which assume a fixed population distribution over time and space based 
on census or residential data. In contrast, dynamic approaches incorporate spatiotem
porally varying population data, enabling a more accurate estimation of exposure 
peaks in specific time and areas. Mommens et al. (2019) considered population move
ments during four time intervals – 3:00–3:30 am, 10:00–10:30 am, 15:00–15:30, and 
21:00–21:30 – to estimate health effects for these periods. Brusselaers et al. (2023a, b) 
incorporated dynamic exposure by linking freight transport emissions with the spatiotem
poral presence of vulnerable populations – toddlers (8:00–18:00 at childcare centres), 
school children (8:30–16:00 at schools), and elderly individuals (>65 years).

4.5. Disparity analysis

4.5.1 Population group comparisons
Health disparities caused by freight emissions among various racial/ethnic groups have 
been analysed in previous studies (n = 7) (Camilleri et al., 2023; Hennessy et al., 2024a; 
Hennessy et al., 2024b; Lathwal et al., 2022; Ross et al., 2015; Tessum et al., 2019; Thind 
et al., 2022). These studies estimated the total number of deaths for each racial group 
within the study area and analysed health disparity by comparing total deaths across 
these groups or comparing to average mortality rates. For instance, Tessum et al. 
(2019) aggregated the total number of deaths for Black, Hispanic, and White/Other 
groups across all grids and compared the total deaths among these racial and ethnic 
groups in the United States. These studies often assume a uniform distribution of popu
lations and mortality within each grid cell. A similar approach has been used to examine 
the health disparities across income levels groups (Hennessy et al., 2024a; Hennessy et al., 
2024b).
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Additionally, three studies indirectly highlighted health inequities among racial/ethnic 
groups by comparing the average levels of air pollution experienced by these populations 
(Lathwal et al., 2022; Ross et al., 2015; Wen et al., 2024). For instance, Wen et al. (2024) 
quantified racial and ethnic disparities in near-roadway PM2.5 exposure in Los Angeles 
County using population-weighted average concentration values, as seen in Equation (2).

PWACi =
􏽘

j

(Pi,jCj)/
􏽘

j

(Pi,j) (2) 

where PWACi is the population-weighted average PM2.5 concentration of racial/ethnic 
group i; Pi,j is the population of racial/ethnic group i in census block j; Cj is PM2.5 concen
tration in census block j.

The above-mentioned studies assume that air pollutant exposure poses the same 
health risks to everyone within the same grid cell. However, vulnerable populations, 
such as older adults, children, and infants, face higher health risks from PM exposure com
pared to the general adult population, contributing to health disparities across age 
groups (Slaughter et al., 2005). To address this, researchers use age-specific functions 
to link health risks with air pollution levels, allowing for the estimation and comparison 
of health outcomes across different age groups. For example, (2023a) reported that chil
dren (0–15 years) and older adults (76–90 years) had the highest risk of emergency hos
pitalisations for pneumonia, with a 1 μg/m³ increase in NOx concentration associated with 
log-linear exposure–response coefficients of 7.68 × 10−⁶ and 5.51 × 10−⁷, respectively. In 
contrast, younger adults (16–45 years) experienced smaller log-linear exposure–response 
coefficients of 5.91 × 10−⁸ and 9.84 × 10−⁸.

4.5.2 Spatial unit comparisons
Communities, typically represented by geographic units such as census tracts, are com
monly used as spatial units for assessing health disparities across geographic regions. 
Three studies integrated air pollution burdens with population characteristics to identify 
communities who are comparatively disproportionately disadvantaged (Ramirez-Ibarra & 
Saphores, 2023; Torbatian et al., 2024; Wen et al., 2024). By comparing the health out
comes in disadvantaged communities to those in the broader study area, these studies 
analysed the health disparity in communities.

The CalEnviroScreen 4.0 screening tool for California is commonly used to identify dis
advantaged communities (Ramirez-Ibarra & Saphores, 2023; Wen et al., 2024). This tool 
calculates a score by multiplying two indexes: one measures pollution burden from mul
tiple sources, and the other reflects population sensitivity to pollution (Faust et al., 2021). 
The pollution index includes exposure (e.g. diesel PM, traffic) and environmental effects 
(e.g. toxic sites). The population index combines indicators of sensitive populations 
(e.g. elderly) and socioeconomic factors (e.g. poverty levels, housing burdened), capturing 
social vulnerability. Communities are classified as disadvantaged if their CalEnviroScreen 
score ranks in the top quartile. Ramirez-Ibarra and Saphores (2023) identified the census 
tract as a disadvantaged community if CalEnviroScreen score is in the upper quartile. Wen 
et al. (2024) provided a more detailed classification that includes moderately disadvan
taged communities (50–100% disadvantaged) and most disadvantaged communities 
(75–100% disadvantaged).
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5. Discussion

5.1. Key takeaways of integrated framework

Figure 3 summarises the widely used models and required data in an integrated frame
work. This framework illustrates how outputs from one stage are prepared and passed 
to the next, highlighting critical considerations for resolution alignment. The key take
aways, including strengths and limitations for each analytical phase are:

Freight demand modelling: In freight trip generation, trip-based models and commod
ity-based models are commonly used. Trip-based models directly estimate freight trips 
and easily integrate with traffic simulations. However, they often neglect variations in 
goods type, weight, and value, which reduce the estimation accuracy. In contrast, com
modity-based models incorporate detailed characteristics of goods but typically require 
extensive and complex goods-related data.

Based on the freight trip generation models outcomes, traffic assignment and simu
lation are performed, using static and dynamic traffic assignment, route-based, or 
agent-based approaches to simulate traffic volumes or vehicle miles travelled (VMT) at 
the link level. Agent-based methods capture detailed individual vehicle data, including 
speed and location. But they require extensive computational resources and are 
complex for large-scale networks. In contrast, static and dynamic traffic assignment and 
route-based approaches require fewer computational resources but provide less detail 
and accuracy in representing individual travel behaviours.

The number of trip-generating establishments (e.g. warehouses, distribution centres, 
retail stores, and residences in the case of e-commerce) and their characteristics (e.g. 
employment and vehicle fleets) are key variables for estimating freight trips. Static and 
dynamic traffic assignment methods typically produce outputs such as traffic volumes, 
vehicle type distributions, and average travel speed at hourly or daily resolutions, 
which are generally compatible with the input requirements of macroscopic emission 
models. In contrast, agent-based methods generate high-resolution outputs, including 
individual vehicle trajectories with location, speed, and acceleration information by the 
second, which are inputs for microscopic emission models.

Emission and air quality modelling: In emission estimation, macroscopic models (e.g. 
HBEFA, GREET, MOBILE, COPERT), microscopic models (e.g. CMEM), and multi-scale 
models (e.g., EMFAC and MOVES) are frequently used to estimate freight emissions. Micro
scopic models consider detailed vehicle operating conditions (e.g. instantaneous speed, 
acceleration, idling) and have high estimation accuracy by capturing the operating pat
terns and emission rate of individual vehicles. As such, they are useful to evaluate 
specific traffic management measures like traffic restrictions or signal optimlisation, but 
they require detailed vehicle trajectory data. In contrast, macroscopic models use 
average traffic conditions on the road network without specific individual vehicle infor
mation, making them efficient for estimating freight emissions across regions (e.g. 
cities, counties, states) and evaluating policies with minimal impacts on traffic conditions, 
such as changes in fuel type.

To prepare emissions data for air pollution estimation, macroscopic or microscopic 
emission models are used to derive stratified emission factors for various vehicle types 
and speeds. These factors, together with VMT, traffic volumes, and link-level speed 

16 Z. QIN ET AL.



data, are used to estimate total freight emissions for each road segment. The temporal 
resolution of these emissions depends on the resolution of the VMT and traffic volume 
data, which may be hourly, daily, monthly, or yearly. For example, air dispersion 
models require hourly inputs (e.g. Gaussian models and CMAQ) so total hourly emissions 

Figure 3. Integrated framework for evaluating health equity impacts of freight emissions.
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are aggregated. In contrast, for models operating at an annual scale (e.g. InMAP), total 
yearly emissions used. Then, air pollutant concentration can be estimated at the grid 
level with hourly or yearly resolution.

Emissions data are then processed using an air quality model to estimate air pollution 
concentrations. Gaussian models (e.g. R-LINE) focus on physical dispersion while CTMs 
(e.g. CMAQ) account for chemical transformations, sedimentation, and secondary pollutant 
formation, which enhance simulation accuracy but require higher computational costs. 
RCMs (e.g. InMAP) leverage CTM data and processes, and use simplifying modelling and 
data collection techniques to reduce computational demand. However, this simplification 
limits their ability to simulate complex atmospheric processes, making RCMs more appro
priate for screening-level assessments or large-scale analyses than for detailed local studies.

Health effect estimation: C-R functions are typically used to estimate mortality and mor
bidity based on air pollutant concentrations at the grid level. These functions can adopt 
linear or log-linear models, providing a straightforward quantification of the relationship 
between changes in pollution levels and associated health outcomes (e.g. mortality and 
morbidity). Their relatively low data requirements make them well-suited to efficiently 
evaluate health impacts over large geographic areas. However, the uniform parameters 
of C-R functions used in many studies often overlook regional variations, and variations 
in population responses and sensitivities to pollutant levels, which may reduce estimation 
accuracy.

Another consideration in health effect estimation is the population distributions over 
time and space. The literature is largely separated into static or dynamic approaches. The 
static approach approximates long-term average effects but may miss short-term vari
ations from commuting and other movements or exposure environments. In contrast, 
the dynamic approach captures spatiotemporal changes in exposure for more accurate 
micro-scale and short-term analyses (Brook et al., 2010; Cesaroni et al., 2013; Brusselaers 
et al., 2023b), though it requires high-resolution data (e.g. mobile phone or GPS) and faces 
challenges of data availability and privacy.

The outcome of health effect estimation is typically a quantification of the estimated 
population-level morbidity and/or mortality outcomes by geographic unit, such as at 
the grid-level.

Disparity analysis: Grid-level mortality and morbidity are integrated with demographic 
and socioeconomic data (e.g. age, race, income) to examine health disparities. Since 
demographic data are often aggregated at administrative units such as census tracts or 
blocks, spatial alignment is required to match these datasets. Mortality and morbidity esti
mated from grid cells can be aggregated to census boundaries using area-weighted or 
population-weighted methods, resulting in health outcomes at the administrative unit 
level. These aggregated health outcomes are then combined with static or dynamic 
demographic and socioeconomic data to calculate total cases (e.g. deaths, hospitallisa
tions) within each administrative unit which enables subsequent disparity analyses.

Disparity analysis can be organised into two main approaches: comparisons across 
population groups and across spatial units. For population group comparisons, disparity 
among subgroups are assessed. For example, several studies examine health effects 
across age groups because exposure-related mortality and morbidity are often 
assumed to vary by age. However, some studies also explore health disparities across 
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other population groups according to racial, income, or other characteristics, due to 
differences in their spatial distributions.

In spatial unit comparisons, total deaths and hospitallisations are compared across 
different areas (e.g. census tracts or TAZs). These analyses often assume uniform mortality 
and morbidity across populations within each spatial unit. Although this assumption sim
plifies implementation, it can reduce estimation accuracy.

Several modelling assumptions may reduce the robustness of disparity analyses. First, 
most approaches overlook intersectionality and compounded effects, underestimating 
inequities among populations facing overlapping disadvantages (e.g. low-income racial 
minorities). Second, C-R functions are often derived from specific populations and may 
not capture susceptibility variations across more demographically diverse groups. 
Finally, aggregating health outcomes to administrative units can mask localised dispar
ities within census tracts or neighbourhoods. This aggregation can also suffer from the 
modifiable areal unit problem (MAUP), where the results may be biased by the selection 
of the specific areal unit (e.g. aggregation at the county level might show different results 
than the tract level).

5.2. Implications and application

This study offers important implications for future research. Several studies have ident
ified health equity issues related to freight emissions, highlighting the need for planners 
and policymakers to integrate equity considerations into decision-making. The proposed 
framework with available models supports pre-planning assessments, enabling more 
balanced decisions that consider economic, environmental, and social dimensions. For 
research, this study underscores key assumptions in existing models that may limit accu
racy, such as static population data or assuming uniform exposures in a spatial unit. 
Future research in this field should carefully consider these barriers, assumptions, and 
tradeoffs in developing their analyses and to address their potential limitations.

The integrated framework can be applied to evaluate the health equity impacts of 
freight policies and emerging trends across both place-based and fleet-based scenarios. 
Place-based scenarios, such as low-emission zones for commercial vehicles and land-use 
reforms for e-commerce-related warehousing, reshape the spatial distribution of freight 
activity and may alter link-level travel behaviours. These changes require freight 
demand modelling to capture their potential health equity effects. Notably, this study 
emphasised exhaust emissions, as these are often the primary focus of PM2.5 emissions 
from transportation source. However, fleet-based scenarios, such as truck electrification, 
adoption of cleaner alternative fuels, and stricter emission standards, directly reduce tail
pipe emissions. By updating vehicle emission factor libraries and modifying fleet compo
sition and vehicle attributes, the framework can simulate how these cleaner technologies 
lower pollutant concentrations along existing routes and alter disparate health outcomes 
across communities. Particularly in the context of truck electrification, PM2.5 emission from 
non-exhaust sources, such as brake and tire wear, road surface abrasion, and resuspension 
of road dust, should be prioritised to develop and assess the environmental and health 
impacts of related policies.

Moreover, this framework supports sensitivity analyses on geographic and population 
segmentation within EJ assessments, helping to inform policy decisions (Baden et al., 
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2007; Fried et al., 2024a). The choice of spatial scale is critical: broader scales may mask local 
disparities, while finer resolutions can uncover micro-level inequalities. Likewise, using a 
single indicator (e.g. race or income) may mask intersecting vulnerabilities, whereas 
cross-classifying and comparing multiple groups and spatial units can reduce bias in EJ 
evaluations (Fried et al., 2024a). However, these technical decisions often stand-in for 
more community-based participatory approaches to research, which can inform freight 
policies that better reflect local knowledge and priorities (e.g. Garcia et al., 2013). Intersec
tional approaches to health equity require transdisciplinary, multi-scalar, and recognitional 
strategies, such as addressing environmental health disparities within broader political- 
economic frameworks that also consider housing affordability, displacement, and labour 
issues (Williams et al., 2023). These theory- and community-based elements represent a 
major gap in freight-related equity research (Fried et al., 2024b).

6. Conclusion

This paper, through reviewing 36 empirical studies related to health equity impacts of 
freight emissions, identifies the key contributors to health equity impacts, including 
specific air pollutants, health endpoints, and disparities across population groups and 
spatial units, laying the foundation for evaluating the health equity impacts of freight emis
sions. It then provides the first state-of-the-art synthesis of widely used models in freight 
demand modelling, air quality modelling, health effect estimation and disparity analysis. 
Finally, it summarises available models and required data for each analytical stage in a 
framework, providing an integrated methodology framework for this interdisciplinary issue.

This study has several limitations. First, the integrated framework is derived from exist
ing literature and may not fully reflect regional variations in model and data availability. 
Second, its application to specific freight scenarios may require further refinement, par
ticularly in data-limited settings or diverse socio-economic conditions. Future research 
should explore empirical validation and adaptation of the framework to real-world case 
studies to enhance its applicability and robustness.

Even so, the contributions of this research are two-fold. This study first reviews the 
methods and tools commonly used to evaluate health equity impacts of freight emissions, 
providing a comprehensive overview of current methodologies. Second, given the lack of 
a systematic framework that integrates available models for this evaluation, we develop 
an integrated framework tailored to the freight sector and analyse the strengths and limit
ations of available models at each analytical stage. This framework addresses gaps ident
ified in previous studies, offers multiple options for implementing evaluations, and 
enhances flexibility to apply the suited models for research.
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