£} Routledge

-1 Taylor &Francis Group

Transport Reviews

Reviews

R el

ISSN: 0144-1647 (Print) 1464-5327 (Online) Journal homepage: www.tandfonline.com/journals/ttrv20

The state of modelling for evaluating health
equity impacts of freight emissions

Zhengtao Qin, Anne Goodchild, Travis Fried, Sarah Dennis-Bauer & Quan
Yuan

To cite this article: Zhengtao Qin, Anne Goodchild, Travis Fried, Sarah Dennis-Bauer & Quan
Yuan (09 Oct 2025): The state of modelling for evaluating health equity impacts of freight
emissions, Transport Reviews, DOI: 10.1080/01441647.2025.2566679

To link to this article: https://doi.org/10.1080/01441647.2025.2566679

@ Published online: 09 Oct 2025.

N
CJ/ Submit your article to this journal

||I| Article views: 66

A
& View related articles &'

@ View Crossmark data (&'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=ttrv20


https://www.tandfonline.com/journals/ttrv20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01441647.2025.2566679
https://doi.org/10.1080/01441647.2025.2566679
https://www.tandfonline.com/action/authorSubmission?journalCode=ttrv20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=ttrv20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/01441647.2025.2566679?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/01441647.2025.2566679?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/01441647.2025.2566679&domain=pdf&date_stamp=09%20Oct%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/01441647.2025.2566679&domain=pdf&date_stamp=09%20Oct%202025
https://www.tandfonline.com/action/journalInformation?journalCode=ttrv20

3
TRANSPORT REVIEWS g ROUtlque
https://doi.org/10.1080/01441647.2025.2566679 & W Taylor &Francis Group

M) Check for updates

The state of modelling for evaluating health equity impacts of
freight emissions

Zhengtao Qin®®, Anne Goodchild®, Travis Fried®, Sarah Dennis-Bauer® and
Quan Yuan®©

®Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai,
People’s Republic of China; ®Department of Civil and Environmental Engineering, University of Washington,
Seattle, WA, USA; “Urban Mobility Institute, Tongji University, Shanghai, People’s Republic of China

ABSTRACT ARTICLE HISTORY
Evaluating health equity impacts of freight emissions is crucial for Received 8 April 2025
developing a sustainable and just freight system. It is a complex Accepted 22 September
process that requires interdisciplinary knowledge, including 2025
transportation, environment, and public health. Full-chain

- . - . . A KEYWORDS
S|mulgt|on is an important approach for_forecastlng freight Health; equity; freight;
planning outcomes. However, a systematic framework that emissions; simulation; air
integrates available models in full-chain and is specifically designed quality

for the freight sector has not been developed. We review 36

empirical studies covering this interdisciplinary topic, and

summarise the commonly used models. We find that EMission

FACtor (EMFAC) and Motor Vehicle Emission Simulator (MOVES)

models are commonly used to estimate freight vehicle emissions,

with their outputs serving as inputs for air quality models, such as

Community Multiscale Air Quality Model (CMAQ) or Intervention

model for air pollution (INMAP). To estimate the health effects,
concentration-response (C-R) functions, combined with static or

dynamic demographic and socioeconomic data, are used to

quantify the relationship between changes in pollutant

concentrations and health outcomes. Then, disparity analysis relies

on the assumption of age-specific C-R functions and examines

statistical differences between demographic groups - including

racial/ethnic groups, income levels, age groups, and other

vulnerable communities. This study comprehensively outlines this

state-of-the-art, integrated framework identified through the

synthesis of this interdisciplinary literature. This framework can

support future researchers in this field and policymakers.

1. Introduction

Diesel heavy-duty trucks and drayage trucks emit significant amounts of nitrogen oxides
(NO,), particulate matter (PM), and black carbon (BC), posing serious risks to respiratory
and circulatory health (Koolik et al.,, 2024; Slaughter et al., 2005; Thind et al., 2022).
Despite heavy-duty vehicles representing about 10% of total traffic volume, they contrib-
ute over 50% of tailpipe NO, emissions in the US (Badshah et al., 2019). Additionally,
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environmental justice (EJ) research underscores that the disproportionate placement of
warehousing facilities in neighbourhoods with high percentages of socially disadvan-
taged populations forces these communities to bear a greater burden of air pollution
from diesel freight vehicles (Minet et al., 2020; Yuan, 2018). This disparity is particularly
evident in California, where, despite overall reductions in air pollution, exposure inequal-
ities persist, especially in areas with high levels of heavy-duty truck traffic (Koolik et al.,
2024). Given freight's contribution to traffic-related air pollution and its different operat-
ing characteristics compared to passenger transport, freight emissions deserve special
attention. Therefore, it is crucial for methods that evaluate the health effects of freight
emissions to also examine how these impacts compare across populations and
geographies.

Empirical field studies are one approach, and essential to evaluating these impacts.
However, a simulation approach is a complementary alternative, allowing for the explora-
tion of unobserved scenarios. Simulation approaches also serve as valuable tools to fore-
cast freight planning outcomes (Tavasszy et al., 2012; Tavasszy & de Bok, 2023). Although
previous literature reviews have summarised related models involving freight demand
modelling (Tavasszy et al., 2012; Tavasszy & de Bok, 2023; Zhou & Dai, 2012), vehicle emis-
sion estimation (Madziel, 2023), air quality modelling (Gilmore et al., 2019; Khan & Hassan,
2020), and exposure and health effect estimation (HEI, 2022; Mueller et al., 2015; Ramani
et al, 2019; Vallamsundar et al., 2016), few studies have reviewed simulation approaches
across the full chain to assess the health equity impacts of freight emissions. Moreover,
while some studies have integrated the key analytical stages for such evaluation (Bickel
et al., 2006; Lefebvre et al, 2013), a systematic framework that integrates available
models and is specifically designed for the freight sector has not yet been developed.

This paper outlines the analytical stages in evaluating the health equity impacts of
freight emissions. By reviewing the current state of research in this field, it provides a com-
prehensive summary of the methods and tools commonly used at each stage and pre-
sents a framework specific to freight emissions. We will achieve the following goals:

(1) define the essential contributors to health equity impacts of freight, providing a foun-
dation for understanding the factors involved;

(2) outline the key analytical stages to evaluate the health equity impacts of freight emis-
sions, and overview the commonly used models in each stage;

(3) summarise specific methods and data required of each stage within a framework for
effectively evaluating the health equity impacts of freight emissions.

The paper is structured as follows: Section 2 describes the analytical stages of evaluat-
ing health equity impacts of freight emissions. Section 3 outlines the methodology.
Section 4 presents results of previous research, and summarises their methods. Finally,
Section 5 discusses the integrated framework, and the implication and application of
this research. Section 6 concludes the contributions and limitations of this study.

2, Stages of evaluating health equity impacts of freight emissions

Health equity is broadly defined as the principle that everyone has a fair opportunity to
reach their full health potential, without distinction based on race, ethnicity,
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socioeconomic background, physical or mental abilities, gender, income, or other social
factors (Rojas-Rueda et al., 2024). Transportation systems can produce harmful external-
ities, such as air pollution, noise pollution, and traffic injury, as well as co-benefits, such
as physical activity in transportation (Cole et al., 2019). This study, however, narrows its
focus to the health equity impacts of freight emissions.

Evaluating the health equity impacts of freight emissions is a complex process, invol-
ving multiple stages. Based on recent review studies related to health and health equity
impacts of freight and general transport (Bickel et al., 2006; Glazener et al., 2021; Patton et
al., 2024; Ramani et al., 2019; Vallamsundar et al., 2016), this evaluation process can be
divided into four analytical stages (see Figure 1). However, the models and tools available
at each stage are not yet unified.

The first stage is freight demand modelling, involving freight trip generation and traffic
assignment. It aims at simulating the activities of freight vehicles on the road network
(Tavasszy et al., 2012), which helps identify the location and intensity of freight emissions.

The second stage, emissions and air quality modelling, aims at assessing the air pol-
lution resulting from freight emissions. It comprises two interconnected steps: emission
estimation and air pollution concentration estimation. Emissions models estimate air pol-
lutants emitted by freight vehicles based on their activity (McNeil et al., 2023; Park, 2022;
Xiao et al.,, 2024; Zhang et al.,, 2019). Air quality modelling simulates the dispersion and
chemical transformation of the pollutants in the atmosphere to predict concentrations
considering the influence of the built environment and atmospheric conditions on pollu-
tant behaviour (Khan & Hassan, 2020; Matthias et al., 2018).

The third stage is health effect estimation, which assesses how these air pollution con-
centrations translate to population exposure and subsequent health outcomes (e.g.
disease cases and mortality). This stage quantifies population exposure by integrating
air pollution data with population distribution data. Epidemiological effect estimates
are used to estimate the health risks associated with these air pollution exposures (Brus-
selaers et al., 2023a; Mommens et al., 2019; Torbatian et al., 2024).

Figure 1. Analytical stages of evaluating health equity impacts of freight emissions.
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Vulnerable groups, such as the elderly and children, face higher health risks due to
factors like chronic lung, asthma, heart conditions in older adults, and the greater air
intake per pound of body weight in children and infants compared to adults (Brusselaers
et al,, 2023a; Slaughter et al., 2005). Additionally, areas near freight facilities and corridors
experience higher exposure to freight emissions compared to other communities
(Ramirez-Ibarra & Saphores, 2023; Wen et al., 2024), making residents at higher health
risk. Therefore, the fourth stage considers the age-specific mortality and morbidity likeli-
hood, and analyses the health disparity across different population groups and spatial
units (Lathwal et al., 2022; Thind et al., 2022; Torbatian et al., 2024).

3. Methodology

The literature on the health equity impacts of freight emissions uses varying terminology
to describe these impacts. To ensure a thorough review, this study adopts a broad search
strategy using key terms frequently utilised in the field, including “health equity”, “health
disparity”, “health effect”, “air quality impact”, “environmental impact”, “exposure assess-
ment”, and “environmental justice”. These terms are combined with “truck emissions” to
guide the literature search.

To ensure all relevant studies were identified, we conducted systematic searches across
leading scientific databases, including Google Scholar, Elsevier Scopus, and Web of Science.
After removing literature that did not refer to at least one key term, we included 85 studies
in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
workflow (see Figure 2). Following the removal of duplicate records, 84 studies proceeded
to title, abstract, and full-text screening. During the title and abstract screening, we exclude
studies that did not involve freight or not assessing health and equity impacts of freight
emissions, eliminating 31 articles. During the full-text screening, studies were excluded
if: (1) the health and equity impacts were not directly linked to freight vehicle emissions
(n=3); (2) the analysis was purely theoretical or literature-based, lacking a modelling
approach (n=5); or (3) disparity analysis used the field observed data, and does not
involve simulation approaches (n =9). Ultimately, we include 36 articles for analysis.

While some studies cover only partial stages of the full process, such as from freight
demand modelling or air quality modelling to health effect estimation, they also
provide the references to the full modelling process. Therefore, we categorised the
selected studies according to their analytical stage (see Table 1).

4, Results
4.1. Assessing contributors to health equity impacts of freight emissions

To explore how freight contributes to health equity impacts, we focus on the following
aspects: (1) specific air pollutants, (2) the health endpoints (e.g. mortality, cardiovascular
and respiratory disease), and (3) disparities in population groups and spatial units.

4.1.1 Air pollutants

PM, 5 is the most widely studied pollutant for health effects from transportation sources
(n=26) due to its severe health risks. Hennessy et al. (2024a) found that the PM, 5 from
diesel truck fleet contributed to 1,484-3,336 premature deaths annually in the United
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Figure 2. PRISMA workflow for reviewing freight health equity literature.

States. Ramirez-lbarra and Saphores (2023) found that regulations and technological
advancements could prevent 377 premature deaths and 13,326 asthma attacks annually
from PM, s of drayage trucks operating at the Ports of Los Angeles and Long Beach in
Southern California.

NO, is the second most studied air pollutant (n = 17), and other air pollutants, such as
SO,, O3, VOCs, and NH3 have also been studied (n = 10). Mommens et al. (2019) estimated
a total of €51.692 is generated on a daily basis for PM and NOx emissions from freight
transport in the Brussels Metropolitan Region. Similarly, Brusselaers et al. (2023a) found
that vulnerable populations in the Brussels-Capital Region face daily health costs of
€37,000 due to PM and NOx emissions from freight vehicles. Liu et al. (2019) found that
in 2010, emissions from urban short-haul trucks in the United States resulted in the follow-
ing mortality per kiloton: 1.9 from VOCs, 28 from NHs, and 3.7 from SO,. The health
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Table 1. Classification of selected studies (N = 36).

Study
Studies included count Analytical stages involved
Hartle et al. (2022) 1 Freight demand modelling
Air quality modelling
Lee et al. (2012); Lee et al. (2009); Liu et al. (2019); Mommens et al. (2019) 4 Freight demand modelling

Air quality modelling
Health effect estimation

Sahin et al. (2023); Zalzal and Hatzopoulou (2022) 2 Freight demand modelling
Air quality modelling
Disparity analysis

Brusselaers et al. (2023a, 2023b); Ramirez-lbarra and Saphores (2023); 4 Freight demand modelling

Torbatian et al. (2024) Air quality modelling

Health effect estimation
Disparity analysis

Bickford et al. (2014); Dong et al. (2018); Hu et al. (2022); Kijewska et al. (2016); 7 Air quality modelling
Malik et al. (2019); Oranges Cezarino et al. (2021); Seo et al. (2013)

Luo et al. (2022); Mac Kinnon et al. (2021); McNeil et al. (2023); Minet et al. 8 Air quality modelling
(2020); Moretti et al. (2021); Pan et al. (2019); Ross et al. (2015); Tong et al. Health effect estimation
(2021)

Ma et al. (2023); Wen et al. (2024); Xiao et al. (2024) 4 Air quality modelling

Disparity analysis

Camilleri et al. (2023); Hennessy et al. (2024a); Hennessy et al. (2024b); 7 Air quality modelling

Lathwal et al. (2022); Park (2022); Tessum et al. (2019); Thind et al. (2022) Health effect estimation

Disparity analysis

impacts of these three air pollutants are primarily attributable to exposure to secondary
PM, 5 formed through atmospheric chemical reactions involving these precursors, rather
than direct exposure to the gaseous pollutants themselves.

4.1.2 Health endpoints

Research on the health effect and health equity impact of freight emissions highlight the
significant role of air pollutants in contributing to morbidity and mortality. Several studies
(n=15) identified premature deaths as a major health endpoint linked to freight-related
air pollution. Ramirez-lbarra and Saphores (2023) found that air pollution from diesel
heavy-duty drayage trucks serving the Ports of Los Angeles and Long Beach in Southern
California is associated with 483 premature deaths in 2012.

Four studies considered the association between freight vehicle emissions and respir-
atory diseases, such as asthma and chronic bronchitis (Brusselaers et al., 2023a; Lee et al.,
2009; Ramirez-lbarra & Saphores, 2023; Torbatian et al., 2024). For example, Torbatian et
al. (2024) pointed out that under the heavy-duty truck electrification scenario, annual
cases of adult chronic bronchitis decrease by over 200, while respiratory-related emer-
gency room visits decline by nearly 45 cases in Greater Toronto and Hamilton Area.

Moreover, four studies have considered the impact of freight vehicle emissions on car-
diovascular conditions, such as heart rhythm disturbances and ischaemic heart disease
(Brusselaers et al., 2023a; Mommens et al., 2019; Ramirez-lbarra & Saphores, 2023; Torba-
tian et al., 2024). Ramirez-lbarra and Saphores (2023) found that heavy-duty drayage
trucks in Southern California were linked to 139 cardiovascular cases in 2012. Brusselaers
et al. (2023a) showed that electrifying heavy-duty trucks leads to the largest estimated
reduction in cardiovascular-related cases, including emergency room visits and hospital
admissions, compared to medium-duty and light-duty trucks in Brussels-Capital Region.
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4.1.3 Disparities in population groups and spatial units

Previous studies related to health equity impact of freight also focused on the health dis-
parity across racial groups (Hennessy et al., 2024a; Lathwal et al., 2022; Tessum et al., 2019;
Thind et al., 2022), income level (Hennessy et al., 2024a), age groups (Brusselaers et al.,
2023a; Ross et al,, 2015), and communities (Ramirez-lbarra & Saphores, 2023; Torbatian
et al., 2024), highlighting health disparities within different population groups and
spatial units.

Seven studies focused on the disparities across racial groups (Camilleri et al., 2023; Hennessy
et al,, 2024a; Hennessy et al., 2024b; Lathwal et al., 2022; Ross et al., 2015; Tessum et al., 2019;
Thind et al., 2022). They commonly confirmed that Black and Hispanic/Latino populations bear
a disproportionate burden of air pollution from freight emissions, with evidence from case
studies in Chicago, Georgia, California, and nationwide analyses across the U.S.

Health disparities also vary by income levels and age groups. Low-income populations
generally face higher health risks from freight-related air pollution compared to their
high-income counterparts (Hennessy et al., 2024a; Park, 2022). Brusselaers et al. (2023a)
found that vulnerable population groups, including toddlers (aged 0-3), school children
(aged 3-18), and elderly individuals (aged 65+) bear €34,517.47 to €40,047.13 in daily
health costs, accounting for 60% of the total costs, despite representing only 25.34% of
the total population of Brussels Capital Region.

Areas near freight facilities and corridors often bear a disproportionate share of the
environmental harms caused by freight activities, worsening social health inequities (Tor-
batian et al., 2024; Wen et al., 2024). Studies on the health equity of freight also investigate
health disparities at various spatial units, such as community level (Ma et al, 2023;
Ramirez-lbarra & Saphores, 2023; Torbatian et al., 2024; Wen et al., 2024). In some disad-
vantaged communities, a higher number of annual asthma exacerbation cases and pre-
mature deaths have been linked to emissions from heavy-duty diesel trucks (Ramirez-
Ibarra & Saphores, 2023; Wen et al., 2024).

4.2. Freight demand modelling

Freight vehicle traffic flow is a critical input for estimating freight vehicle emissions.
Several studies have utilised the Freight Analysis Framework and California Air Resources
Board’s EMissions FACtor (EMFAC) fleet database to directly capture the truck traffic flows
on road networks (Bickford et al., 2014; Hennessy et al., 2024a; Hennessy et al., 2024b;
Lathwal et al., 2022; McNeil et al., 2023; Ross et al., 2015; Thind et al., 2022; Tong et al.,
2021; Wen et al., 2024). In addition, some studies (n=5) used observed monitoring
data (e.g. GPS data, vehicle telematics, and entry point monitoring) to estimate the
freight traffic flow within specific study areas (Brusselaers et al., 2023b; Dong et al.,
2018; Hu et al,, 2022; Oranges Cezarino et al.,, 2021; Pan et al., 2019). However, these
studies often lack the incorporation of freight vehicle traffic simulations. Hence, we
emphasise those studies employing simulation approaches to estimate the freight
traffic flow (see Table 2).

4.2.1 Freight trip generation
According to Zhou and Dai (2012), freight demand models can be classified as five groups:
(i) Growth-factor and Origin/Destination (O/D) synthesis, (ii) Commodity-based, (iii) Trip or
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vehicle-based, (iv) Tour-based, and (v) Logistics or supply-chain. In the studies of health
equity impacts of freight emissions, trip-based models and commodity-based models
are broadly applied to generate freight demand. Trip-based models typically use zonal
economic and land use attributes to directly estimate the total freight trips. In contrast,
commodity-based models concentrate on freight flows or commodity movements
between traffic analysis units.

Trip-based models are commonly used to generate freight trips (n = 6). Key variables
such as establishment counts, employment, and special generators were incorporated to
directly predict zonal 24-hour trip generation for light, medium, and heavy trucks. For
example, Hartle et al. (2022) used land use data and establishments data to estimate
the number of freight trip attraction (FTA) and freight trip production (FTP) for each
establishment category in polygon, and then convert business FTA and FTP to the
number of different types of trucks. Alternatively, Ramirez-lbarra and Saphores (2023),
Sahin et al. (2023), Lee et al. (2012), and Lee et al. (2009) did not employ specific
methods to estimate freight trip generation. Instead, they extracted freight O/D pairs
from broader regional traffic trip simulations, such as the Southern California Association
of Governments regional trip-based model and the Atlanta Regional Commission’s
Activity-Based Model.

Three studies used commodity-based models to estimate the freight demand for
various commodity types, which were then combined with vehicle fleet data to estimate
the corresponding freight trips (Brusselaers et al., 2023a, 2023b; Liu et al., 2019; Mommens
et al,, 2019). For example, Liu et al. (2019) estimated the commodity shipment demand
and combined it with the vehicle fleet composition to estimate the freight trips in
long-haul and short-haul scenarios. Mommens et al. (2019) employed socio-economic
data, including employment, ground surface, and population density, to generate ship-
ments of specific commodity and cargo type. Freight demand was then used as input
data for the Transport Agent-Based Model (TABM) to simulate individual vehicle activity.

4.2.2 Traffic assignment and simulation

Traffic assignment methods are used to estimate traffic flow based on O-D trip data. They
include static and dynamic traffic assignment methods, which differ in loading traffic
flows on road networks, either with or without considering time variations (Saw et al.,
2015). In contrast, route-based models calculate possible routes within the network
and directly distribute traffic flows along possible routes (Han, 2007). Agent-based
models estimate commercial vehicle traffic flow by simulating individual vehicle activities.
These models offer higher spatial and temporal resolution than traditional assignment
and route-based models, enabling more detailed information of vehicles. Using these cat-
egories, we summarise the methods widely used to estimate freight vehicle traffic flows in
empirical studies.

Traditional traffic assignment methods rely on freight trip generation and trip distri-
bution to allocate freight traffic flow across road networks, either statically or dynamically
(Ramirez-Ibarra & Saphores, 2023; Torbatian et al., 2024). Torbatian et al. (2024) employed
linear regression for freight trip generation, a standard doubly constrained gravity model
for trip distribution, and a static multiclass user equilibrium assignment approach to allo-
cate freight traffic flow at the hourly link level. In contrast, Ramirez-Ibarra and Saphores
(2023) used dynamic traffic assignment (DTA) for traffic allocation at the link level.
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Table 2. Examples of studies estimating freight traffic flow.

Freight trip Traffic assignment and Output spatial-
Source Freight segment generation simulation temporal resolution
Torbatian et al. Light-, medium-, and  Trip-based « Static Traffic Assignment e Spatial: link level
(2024) heavy-duty trucks model Method e Temporal: hourly
o Multiclass user equilibrium
assignment
Ramirez-Ibarra Heavy-duty drayage Trip-based o Dynamic Traffic Assignment e Spatial: vehicle-
and Saphores trucks model Method specific level
(2023) o Use TransModeler to simulate e Temporal: second-
network traffic flow by second
Sahin et al. (2023) Light-duty, medium- Trip-based « Transport Agent-Based e Spatial: vehicle-
duty, heavy-duty model Model specific level
vehicles o Use Polaris to simulate e Temporal: 6 s

vehicle trajectories

Hartle et al. (2022) Last mile delivery Trip-based * Route-based approach o Spatial: link level
model o Use QGIS to calculate travel « Temporal: daily
distance based on shortest
path
Brusselaers et al.  Light-duty vehicles, Commodity- e Transport Agent-Based e Spatial: vehicle-
(2023a, 2023b) rigid trucks, and based model Model specific level
truck-trailer e Use MATSim to simulate e Temporal: 15 min
combinations vehicle activity
Mommens et al.  Vans, light-duty, and Commodity- e Transport Agent-Based e Spatial: vehicle-
(2019) heavy-duty vehicles based model Model specific level
o Use MATSIm to simulate e Temporal: 30 min

vehicles activity

Liu et al. (2019)  Long-haul and short- ~ Commodity- e Route-based approach Spatial: link level

haul trucks based model e Asymptotic vehicle routing e Temporal: yearly
model
Lee et al. (2012,  Medium-duty trucks Trip-based « Dynamic Traffic Assignment e Spatial: vehicle-
2009) and heavy-duty model Method specific level
trucks o Use TransModeler to simulate e Temporal: second-
network traffic flow by-second
Zalzal and Light-duty vehicle and  / o Use Gradient Boost Models e Spatial: link level
Hatzopoulou trucks (XGBoost models) to predict e Temporal: yearly
(2022) the truck counts and traffic
conditions

The route-based methods use routing algorithms (e.g. shortest-path algorithms and
asymptotic vehicle routing models) to allocate traffic flow to possible routes. Hartle et
al. (2022) assumed that truck drivers follow the shortest path and allocate truck flow
across the road network. Liu et al. (2019) applied an asymptotic vehicle routing model
to distribute shipment flows, and then subsequently incorporate vehicle fleet compo-
sition to estimate freight traffic flows at the link level.

Compared to traditional traffic assignment methods and route-based methods, agent-
based traffic models offer higher spatial and temporal output resolution. These models
focus on individual vehicles, simulating their trajectories at minute or even second-
level intervals (Brusselaers et al, 2023a; Mommens et al., 2019). Brusselaers et al.
(2023a) used the MATSIm tool to simulate the individual freight vehicles entering or
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leaving network links, and aggregated to 15-minute time intervals for computational pur-
poses. Mommens et al. (2019) similarly simulated the freight vehicle movements between
4,933 TAZs in the Belgian territory, and then counted the traffic flow at 30-minute inter-
vals. In addition, TransModeler simulation tool can perform the DTA and generate the
vehicle trajectories second-by-second, providing an integrated approach for traffic assign-
ment and simulation (Lee et al., 2009; Lee et al., 2012; Ramirez-lbarra & Saphores, 2023).

4.3. Emission and air quality modelling

Based on the output from freight demand modelling, including traffic condition and
traffic volumes, emission models are used to estimate freight vehicle emissions. Air dis-
persion processes determine how pollutants spread, dilute, and transform in the atmos-
phere, influencing their spatial and temporal distribution. These air dispersion processes
are important to capture to estimate how vehicle emissions translate to air pollution con-
centrations. In this section, we illustrate the parameters of the models and tools com-
monly used to estimate emissions and air pollution concentrations.

4.3.1 Emissions estimation

Given the input size of emission models, emission models are commonly classified into
two categories: macroscopic models and microscopic models (Zhang et al., 2022). The
summary of emission models used in previous studies is presented in Table 3. Macro-
scopic models, such as HBEFA, GREET, MOBILE, and COPERT are typically designed to esti-
mate the amount of emissions over a broader spatial and temporal scale, such as an entire
city, region, or road network for a given year. They usually rely on average travel speed to
estimate the emission factors (in the unit of grams per mile), overlooking different driving
behaviours in the same average travel speed (Madziel, 2023). In contrast, microscopic
models, such as CMEM, focus on specific driving conditions. These models incorporate
parameters like instantaneous speed and acceleration to estimate real-time pollutant
emission rates (grams per second), which are then converted to emission factors in
grams per mile (Madziel, 2023) (Camilleri et al., 2023; Pan et al., 2019; Zalzal & Hatzopou-
lou, 2022). In addition, some emission models, such as EMFAC and MOVES, integrate mul-
tiple spatial scales, allowing applications from vehicle level to regional level. They can be
applied under macroscopic settings by using average travel speeds, or under microscopic
settings when detailed traffic conditions and data are available.

Among these emission models, EMFAC and MOVES are widely used in studies related
to health equity impact of freight. EMFAC is the recommended model for use in California,
while MOVES is designated for a broader range of locations across the United States,
including District of Columbia, Puerto Rico, and the U.S. Virgin Islands. Seven studies
utilise the EMFAC model to estimate the emission factors of heavy-duty vehicles. In
these studies, link-based traffic activities (e.g. average traffic speed), vehicle characteristics
(e.g. vehicle type and model year), and fuel type are the important inputs to determine
exhaust emissions factors.

The MOVES model is also widely used (n = 7). This model is effective to provide detailed
emission estimates when integrated with second-by-second vehicle speed and accelera-
tion data from microscopic traffic simulations. Lee et al. (2012) and Ramirez-lbarra and
Saphores (2023) employed the TransModeler tool to generate these parameters as



Table 3. Summary of emission models used in previous research.
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Model scale

Emission model

Main input parameters

Sources

Macroscopic

Microscopic

Multi-scale
(macroscopic
and microscopic)

Handbook of Emission

Factors for Road Transport

(HBEFA)

Greenhouse Gases,
Regulated Emissions, and
Energy Use in
Technologies (GREET)

Mobile Source Emission
Factor Model (MOBILE)

Computer Programme to
Calculate Emissions from
Road Transport (COPERT)

US National Emissions
Inventory (NEI)

Comprehensive Modal
Emissions Model (CMEM)

EMission FACtor (EMFAC)

Motor Vehicle Emission
Simulator (MOVES)

Vehicle type, fuel type,
model year

Vehicle type, engine type;
Technology level, fuel
economy

Temperature, humidity

Vehicle type, fuel type,
model year

Average speed, driving
cycle, months and times
of day

Temperature, humidity

Vehicle type, fuel type,
load, emission standard
Average speed, road type,
peak or off-peak travel

Vehicle type, furl type,
model year, spatial scale
(national/state, county or
tribe)

Vehicle type and age,
load, fuel type, engine
technology, model year
Average speed, driving
cycle

Temperature, humidity,
ambient pressure, wind
velocity and direction

Vehicle type and age,
load, fuel type, model
year

Operating mode, average
speed, road type

Season or month,
temperature, humidity

Vehicle type and age, fuel
type, model year
Average speed, road type,
driving cycle, month and
times of day
Temperature, humidity

Brusselaers et al. (2023a, 2023b);
Kijewska et al. (2016); Mommens
et al. (2019)

Lathwal et al. (2022); McNeil et al.
(2023); Sahin et al. (2023); Thind
et al. (2022); Tong et al. (2021)

Bickford et al. (2014)

Dong et al. (2018); Hu et al. (2022)

Ross et al. (2015); Tessum et al.
(2019)

Lee et al. (2009)

Hartle et al. (2022); Hennessy et al.
(2024a); Hennessy et al. (2024b);
Lee et al. (2009); Luo et al.
(2022); Moretti et al. (2021); Wen
et al. (2024)

Camilleri et al. (2023); Lee et al.
(2012); Pan et al. (2019); Park
(2022); Ramirez-Ibarra and
Saphores (2023); Torbatian et al.
(2024); Zalzal and Hatzopoulou
(2022)

input into the MOVES model, enabling
microscopic level. In contrast, Camilleri

a detailed estimation of truck emissions at the
et al. (2023), Torbatian et al. (2024) and Zalzal
and Hatzopoulou (2022) utilised the model’s default driving cycles to estimate average
emission factors for average speeds in specific road types. Additionally, the MOVES
model can estimate idling emission factors in grams per hour (g/hr). Park (2022) used
MOVES to assess idling emissions from port drayage trucks at the Port of New York and
New Jersey, reporting NO, and PM, s emission factors of 52.9 and 4.281 g/hr, respectively.
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4.3.2 Air pollution concentration estimation

A wide variety of approaches and models are used to estimate the air pollution concen-
trations. Among them, land use regression (LUR) models rely on statistical relationships
between observed concentrations and spatial characteristics to estimate the concen-
trations (Beelen et al.,, 2013). However, they require large amounts of data to develop
robust results and cannot capture the underlying physical and chemical processes. As a
result, most studies still prefer dispersion models for estimating air pollution concen-
trations. Table 4 shows the air dispersion models commonly used in previous research.
They fall into three categories: Gaussian models (e.g. R-LINE, C-LINE, CALPUFF, and the
Gaussian Plume Model), chemical transport models (e.g. CMAQ, CAMx, and Polair3D),
and reduced-complexity models (e.g. INMAP, EASIUR, and APEEP).

Gaussian models simulate physical dispersion processes and are broadly classified into
steady-state and puff models. Steady-state models (e.g. R-LINE, C-LINE, and Gaussian
Plume) assume continuous emissions and fixed meteorological conditions, making
them computationally efficient and suitable for long-term average concentration esti-
mates. Among them, Gaussian Plume models and R-LINE are mostly used. Gaussian
Plume models are based on classic Gaussian theory, which assumes that pollution dis-
persion follows a Gaussian distribution. These models require relatively simple meteoro-
logical inputs, such as wind speed and direction. R-LINE focuses on road-based line source
emissions modelling, and requires detailed meteorological conditions (e.g. temperature,
wind speed, wind direction, surface friction velocity) and road geometry. It provides pol-
lutant concentration estimates at specific sensitive receptor locations. The C-LINE model is

Table 4. Summary of dispersion models used in previous research.

Type of model Emission model Input parameters Sources
Gaussian models R-LINE Traffic emissions, meteorology, Luo et al. (2022); Ma et al. (2023);
road geometry Moretti et al. (2021); Wen et al.
(2024)
C-LINE Traffic composition and volume, Ross et al. (2015)
meteorology
California Puff Model Traffic emissions, terrain coastal Lee et al. (2012); Lee et al. (2009)
(CALPUFF) interactions, building downwash,
and land use
Gaussian Plume Model  Traffic emissions, wind speed, wind  Brusselaers et al. (2023a, 2023b);
direction, stability class Kijewska et al. (2016);
Mommens et al. (2019); Xiao et
al. (2024)

Chemical Community Multiscale  Traffic emissions, Emissions Bickford et al. (2014); Camilleri et
Transportation Air Quality Model inventory, meteorology, land use, al. (2023); Mac Kinnon et al.
models (CMAQ) initial and boundary condition (2021); Pan et al. (2019)

Polair3D Traffic emissions, Emissions Minet et al. (2020); Torbatian et

inventory, meteorology, land use, al. (2024)
initial and boundary condition,
other emission source

Reduced- Intervention model for ~ Primary pollutants (SO,, NO, NH3;,  Hennessy et al. (2024a, 2024b);
complexity air pollution (InNMAP) VOC, PM;5), emission source Liu et al. (2019); McNeil et al.
models location, emission rate, (2023); Ramirez-Ibarra and

meteorology, emission source Saphores (2023); Tessum et al.
height (2019); Thind et al. (2022)
Estimating Air pollution  Primary pollutants (SO,, NO, NH;,  Lathwal et al. (2022); Tong et al.
Social Impact Using PM, s), emission source location, (2021)
Regression (EASIUR) emission rate, meteorology,

emission source height
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similar to the R-LINE model in terms of input variables but is intended for broader geo-
graphic areas, such as grids. In contrast, puff models (e.g. CALPUFF) represent pollutants
as discrete puffs, enabling simulation of dynamic meteorology and complex terrains,
though they require more detailed inputs and computational resources. However, they
are more suitable for short-term or episodic assessments across diverse spatial and tem-
poral scales.

Chemical transport models (CTM) account for the spatial and temporal distribution of
pollutants and incorporate processes such as diffusion, chemical transformation, sedi-
mentation, and secondary pollutant formation (Matthias et al., 2018; Tessum et al,,
2017). The CMAQ and Polair3D are the most commonly used models (n =6). CMAQ sup-
ports simulations from local (city-level) to national and even continental scales, whereas
Polair3D focuses on smaller domains, making it more suitable for city — and regional-scale
air quality assessments.

Given the complexity of CTM, reduced-complexity models (RCMs), such as InMAP,
EASIUR, and APEEP, are used to reduce computational demands and user effort while
maintaining predictive accuracy (Tessum et al., 2017). InMAP is the most commonly
used RCM in this sample (n = 7). It allows estimating average annual air pollutants concen-
trations at resolutions varying from 1 km x 1 km to 48 km x 48 km. EASIUR is limited to a
coarser spatial resolution of 36 km x 36 km. Similarly, APEEP also operates at a county or
state level, limiting its ability to capture fine-scale spatial variability.

Dispersion models require inputs such as traffic emissions, land use (e.g. land cover,
surface roughness, heat exchange parameters), meteorological conditions (e.g. tempera-
ture, wind speed, wind direction, surface friction velocity), and other pollution sources.
Land use data are often obtained from global databases, such as USGS Land Cover,
GLC2000, and MODIS. Meteorological data come from observational networks (e.g.
SCAQMD, National Oceanic and Atmospheric Administration) or numerical models such
as WRF, and estimates of other pollution sources typically rely on emission inventories
processed with tools like SMOKE.

4.4. Health effect estimation

Exposure to PM, s, NO,, and Os are associated with increased mortality and morbidity
from cardiovascular diseases, such as ischaemic heart disease, stroke, chronic obstructive
pulmonary disease, and lung cancer (HEI, 2022; Patton et al., 2024). To estimate the health
effects of freight emissions, previous studies (n = 16) commonly employed concentration-
response (C-R) functions to quantify the relationship between changes in pollutant con-
centrations and corresponding health endpoints.

Three studies assume the relationships between air pollution and mortality and mor-
bidity are standard linear (Mommens et al., 2019; Ramirez-lbarra & Saphores, 2023; Torba-
tian et al., 2024). For example, Mommens et al. (2019) showed that, in the Brussels Capital
Region, the rates of hospital emergency visits for conditions such as pneumonia, chronic
obstructive pulmonary disease, ischaemic heart disease, and heart rhythm disturbances
increase within a range of 0.4% to 1.2%.

Thirteen studies assumed a nonlinear (i.e. log-linear) relationship between mortality
incidence and air pollutant concentrations (Brusselaers et al., 2023a; Camilleri et al.,
2023; Hennessy et al.,, 2024a; Hennessy et al., 2024b; Lee et al,, 2012; Liu et al, 2019;
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Mac Kinnon et al., 2021; McNeil et al., 2023; Minet et al., 2020; Pan et al., 2019; Tessum et
al, 2019; Thind et al., 2022; Tong et al., 2021). The common log-linear C-R function used to
estimate the relationship between changes in air quality and health endpoints is pre-
sented in Equation (1).

Ay = (1 — exp(—BAX)) - yo - Pop Q)

In this equation, Ay is the change in health outcome, y; is the baseline rate of the
health outcome (i.e. the rate in the absence of increased air pollutant concentrations),
B is the epidemiological hazard ratio associated with exposure to air pollution, Ax is
the change in air pollutant concentrations (e.g. PM, s concentrations), and Pop is the
size of the total affected population. Camilleri et al. (2023) assumed hazard ratios of
1.04 per 10 pg/m? for annual mean NO,, 1.03 per 5 pg/m? for annual mean PM, s.

Alternatively, Ross et al. (2015) used odds ratios to estimate the relative risks of diseases
from freight exposures. Five studies employed approaches to indirectly assess the health
effects of freight emissions without estimating mortality or morbidity. Four of these
studies analyzed population spatial distribution to estimate exposure (Lee et al., 2009;
Luo et al., 2022; Moretti et al., 2021; Park, 2022) while Lathwal et al. (2022) monetised
health outcomes using marginal social cost assessments.

The spatial and temporal distribution of populations plays a critical role in health effect
estimation. This involves static and dynamic approaches to estimate the exposure (Beckx
et al., 2009; Bickel et al, 2006; Dons et al., 2011). Most studies (n=33) rely on static
approaches, which assume a fixed population distribution over time and space based
on census or residential data. In contrast, dynamic approaches incorporate spatiotem-
porally varying population data, enabling a more accurate estimation of exposure
peaks in specific time and areas. Mommens et al. (2019) considered population move-
ments during four time intervals - 3:00-3:30 am, 10:00-10:30 am, 15:00-15:30, and
21:00-21:30 - to estimate health effects for these periods. Brusselaers et al. (2023a, b)
incorporated dynamic exposure by linking freight transport emissions with the spatiotem-
poral presence of vulnerable populations — toddlers (8:00-18:00 at childcare centres),
school children (8:30-16:00 at schools), and elderly individuals (>65 years).

4.5. Disparity analysis

4.5.1 Population group comparisons

Health disparities caused by freight emissions among various racial/ethnic groups have
been analysed in previous studies (n=7) (Camilleri et al., 2023; Hennessy et al., 2024a;
Hennessy et al., 2024b; Lathwal et al., 2022; Ross et al., 2015; Tessum et al.,, 2019; Thind
et al, 2022). These studies estimated the total number of deaths for each racial group
within the study area and analysed health disparity by comparing total deaths across
these groups or comparing to average mortality rates. For instance, Tessum et al.
(2019) aggregated the total number of deaths for Black, Hispanic, and White/Other
groups across all grids and compared the total deaths among these racial and ethnic
groups in the United States. These studies often assume a uniform distribution of popu-
lations and mortality within each grid cell. A similar approach has been used to examine
the health disparities across income levels groups (Hennessy et al., 2024a; Hennessy et al.,
2024b).
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Additionally, three studies indirectly highlighted health inequities among racial/ethnic
groups by comparing the average levels of air pollution experienced by these populations
(Lathwal et al., 2022; Ross et al., 2015; Wen et al., 2024). For instance, Wen et al. (2024)
quantified racial and ethnic disparities in near-roadway PM, s exposure in Los Angeles
County using population-weighted average concentration values, as seen in Equation (2).

PWAG =Y " (P,G)/ Y (Py) 2
j j

where PWAC; is the population-weighted average PM, s concentration of racial/ethnic

group i; P;; is the population of racial/ethnic group i in census block j; G; is PM, 5 concen-

tration in census block j.

The above-mentioned studies assume that air pollutant exposure poses the same
health risks to everyone within the same grid cell. However, vulnerable populations,
such as older adults, children, and infants, face higher health risks from PM exposure com-
pared to the general adult population, contributing to health disparities across age
groups (Slaughter et al.,, 2005). To address this, researchers use age-specific functions
to link health risks with air pollution levels, allowing for the estimation and comparison
of health outcomes across different age groups. For example, (2023a) reported that chil-
dren (0-15 years) and older adults (76-90 years) had the highest risk of emergency hos-
pitalisations for pneumonia, with a 1 ug/m? increase in NO, concentration associated with
log-linear exposure-response coefficients of 7.68 x 107° and 5.51 x 1077, respectively. In
contrast, younger adults (16-45 years) experienced smaller log-linear exposure-response
coefficients of 591 x 107% and 9.84 x 1072,

4.5.2 Spatial unit comparisons

Communities, typically represented by geographic units such as census tracts, are com-
monly used as spatial units for assessing health disparities across geographic regions.
Three studies integrated air pollution burdens with population characteristics to identify
communities who are comparatively disproportionately disadvantaged (Ramirez-lbarra &
Saphores, 2023; Torbatian et al., 2024; Wen et al.,, 2024). By comparing the health out-
comes in disadvantaged communities to those in the broader study area, these studies
analysed the health disparity in communities.

The CalEnviroScreen 4.0 screening tool for California is commonly used to identify dis-
advantaged communities (Ramirez-lbarra & Saphores, 2023; Wen et al., 2024). This tool
calculates a score by multiplying two indexes: one measures pollution burden from mul-
tiple sources, and the other reflects population sensitivity to pollution (Faust et al., 2021).
The pollution index includes exposure (e.g. diesel PM, traffic) and environmental effects
(e.g. toxic sites). The population index combines indicators of sensitive populations
(e.g. elderly) and socioeconomic factors (e.g. poverty levels, housing burdened), capturing
social vulnerability. Communities are classified as disadvantaged if their CalEnviroScreen
score ranks in the top quartile. Ramirez-lbarra and Saphores (2023) identified the census
tract as a disadvantaged community if CalEnviroScreen score is in the upper quartile. Wen
et al. (2024) provided a more detailed classification that includes moderately disadvan-
taged communities (50-100% disadvantaged) and most disadvantaged communities
(75-100% disadvantaged).
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5. Discussion
5.1. Key takeaways of integrated framework

Figure 3 summarises the widely used models and required data in an integrated frame-
work. This framework illustrates how outputs from one stage are prepared and passed
to the next, highlighting critical considerations for resolution alignment. The key take-
aways, including strengths and limitations for each analytical phase are:

Freight demand modelling: In freight trip generation, trip-based models and commod-
ity-based models are commonly used. Trip-based models directly estimate freight trips
and easily integrate with traffic simulations. However, they often neglect variations in
goods type, weight, and value, which reduce the estimation accuracy. In contrast, com-
modity-based models incorporate detailed characteristics of goods but typically require
extensive and complex goods-related data.

Based on the freight trip generation models outcomes, traffic assignment and simu-
lation are performed, using static and dynamic traffic assignment, route-based, or
agent-based approaches to simulate traffic volumes or vehicle miles travelled (VMT) at
the link level. Agent-based methods capture detailed individual vehicle data, including
speed and location. But they require extensive computational resources and are
complex for large-scale networks. In contrast, static and dynamic traffic assignment and
route-based approaches require fewer computational resources but provide less detail
and accuracy in representing individual travel behaviours.

The number of trip-generating establishments (e.g. warehouses, distribution centres,
retail stores, and residences in the case of e-commerce) and their characteristics (e.g.
employment and vehicle fleets) are key variables for estimating freight trips. Static and
dynamic traffic assignment methods typically produce outputs such as traffic volumes,
vehicle type distributions, and average travel speed at hourly or daily resolutions,
which are generally compatible with the input requirements of macroscopic emission
models. In contrast, agent-based methods generate high-resolution outputs, including
individual vehicle trajectories with location, speed, and acceleration information by the
second, which are inputs for microscopic emission models.

Emission and air quality modelling: In emission estimation, macroscopic models (e.g.
HBEFA, GREET, MOBILE, COPERT), microscopic models (e.g. CMEM), and multi-scale
models (e.g., EMFAC and MOVES) are frequently used to estimate freight emissions. Micro-
scopic models consider detailed vehicle operating conditions (e.g. instantaneous speed,
acceleration, idling) and have high estimation accuracy by capturing the operating pat-
terns and emission rate of individual vehicles. As such, they are useful to evaluate
specific traffic management measures like traffic restrictions or signal optimlisation, but
they require detailed vehicle trajectory data. In contrast, macroscopic models use
average traffic conditions on the road network without specific individual vehicle infor-
mation, making them efficient for estimating freight emissions across regions (e.g.
cities, counties, states) and evaluating policies with minimal impacts on traffic conditions,
such as changes in fuel type.

To prepare emissions data for air pollution estimation, macroscopic or microscopic
emission models are used to derive stratified emission factors for various vehicle types
and speeds. These factors, together with VMT, traffic volumes, and link-level speed
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Figure 3. Integrated framework for evaluating health equity impacts of freight emissions.

data, are used to estimate total freight emissions for each road segment. The temporal
resolution of these emissions depends on the resolution of the VMT and traffic volume
data, which may be hourly, daily, monthly, or yearly. For example, air dispersion
models require hourly inputs (e.g. Gaussian models and CMAQ) so total hourly emissions
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are aggregated. In contrast, for models operating at an annual scale (e.g. INMAP), total
yearly emissions used. Then, air pollutant concentration can be estimated at the grid
level with hourly or yearly resolution.

Emissions data are then processed using an air quality model to estimate air pollution
concentrations. Gaussian models (e.g. R-LINE) focus on physical dispersion while CTMs
(e.g. CMAQ) account for chemical transformations, sedimentation, and secondary pollutant
formation, which enhance simulation accuracy but require higher computational costs.
RCMs (e.g. INMAP) leverage CTM data and processes, and use simplifying modelling and
data collection techniques to reduce computational demand. However, this simplification
limits their ability to simulate complex atmospheric processes, making RCMs more appro-
priate for screening-level assessments or large-scale analyses than for detailed local studies.

Health effect estimation: C-R functions are typically used to estimate mortality and mor-
bidity based on air pollutant concentrations at the grid level. These functions can adopt
linear or log-linear models, providing a straightforward quantification of the relationship
between changes in pollution levels and associated health outcomes (e.g. mortality and
morbidity). Their relatively low data requirements make them well-suited to efficiently
evaluate health impacts over large geographic areas. However, the uniform parameters
of C-R functions used in many studies often overlook regional variations, and variations
in population responses and sensitivities to pollutant levels, which may reduce estimation
accuracy.

Another consideration in health effect estimation is the population distributions over
time and space. The literature is largely separated into static or dynamic approaches. The
static approach approximates long-term average effects but may miss short-term vari-
ations from commuting and other movements or exposure environments. In contrast,
the dynamic approach captures spatiotemporal changes in exposure for more accurate
micro-scale and short-term analyses (Brook et al., 2010; Cesaroni et al., 2013; Brusselaers
etal., 2023b), though it requires high-resolution data (e.g. mobile phone or GPS) and faces
challenges of data availability and privacy.

The outcome of health effect estimation is typically a quantification of the estimated
population-level morbidity and/or mortality outcomes by geographic unit, such as at
the grid-level.

Disparity analysis: Grid-level mortality and morbidity are integrated with demographic
and socioeconomic data (e.g. age, race, income) to examine health disparities. Since
demographic data are often aggregated at administrative units such as census tracts or
blocks, spatial alignment is required to match these datasets. Mortality and morbidity esti-
mated from grid cells can be aggregated to census boundaries using area-weighted or
population-weighted methods, resulting in health outcomes at the administrative unit
level. These aggregated health outcomes are then combined with static or dynamic
demographic and socioeconomic data to calculate total cases (e.g. deaths, hospitallisa-
tions) within each administrative unit which enables subsequent disparity analyses.

Disparity analysis can be organised into two main approaches: comparisons across
population groups and across spatial units. For population group comparisons, disparity
among subgroups are assessed. For example, several studies examine health effects
across age groups because exposure-related mortality and morbidity are often
assumed to vary by age. However, some studies also explore health disparities across
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other population groups according to racial, income, or other characteristics, due to
differences in their spatial distributions.

In spatial unit comparisons, total deaths and hospitallisations are compared across
different areas (e.g. census tracts or TAZs). These analyses often assume uniform mortality
and morbidity across populations within each spatial unit. Although this assumption sim-
plifies implementation, it can reduce estimation accuracy.

Several modelling assumptions may reduce the robustness of disparity analyses. First,
most approaches overlook intersectionality and compounded effects, underestimating
inequities among populations facing overlapping disadvantages (e.g. low-income racial
minorities). Second, C-R functions are often derived from specific populations and may
not capture susceptibility variations across more demographically diverse groups.
Finally, aggregating health outcomes to administrative units can mask localised dispar-
ities within census tracts or neighbourhoods. This aggregation can also suffer from the
modifiable areal unit problem (MAUP), where the results may be biased by the selection
of the specific areal unit (e.g. aggregation at the county level might show different results
than the tract level).

5.2. Implications and application

This study offers important implications for future research. Several studies have ident-
ified health equity issues related to freight emissions, highlighting the need for planners
and policymakers to integrate equity considerations into decision-making. The proposed
framework with available models supports pre-planning assessments, enabling more
balanced decisions that consider economic, environmental, and social dimensions. For
research, this study underscores key assumptions in existing models that may limit accu-
racy, such as static population data or assuming uniform exposures in a spatial unit.
Future research in this field should carefully consider these barriers, assumptions, and
tradeoffs in developing their analyses and to address their potential limitations.

The integrated framework can be applied to evaluate the health equity impacts of
freight policies and emerging trends across both place-based and fleet-based scenarios.
Place-based scenarios, such as low-emission zones for commercial vehicles and land-use
reforms for e-commerce-related warehousing, reshape the spatial distribution of freight
activity and may alter link-level travel behaviours. These changes require freight
demand modelling to capture their potential health equity effects. Notably, this study
emphasised exhaust emissions, as these are often the primary focus of PM, s emissions
from transportation source. However, fleet-based scenarios, such as truck electrification,
adoption of cleaner alternative fuels, and stricter emission standards, directly reduce tail-
pipe emissions. By updating vehicle emission factor libraries and modifying fleet compo-
sition and vehicle attributes, the framework can simulate how these cleaner technologies
lower pollutant concentrations along existing routes and alter disparate health outcomes
across communities. Particularly in the context of truck electrification, PM, s emission from
non-exhaust sources, such as brake and tire wear, road surface abrasion, and resuspension
of road dust, should be prioritised to develop and assess the environmental and health
impacts of related policies.

Moreover, this framework supports sensitivity analyses on geographic and population
segmentation within EJ assessments, helping to inform policy decisions (Baden et al.,
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2007; Fried et al., 2024a). The choice of spatial scale is critical: broader scales may mask local
disparities, while finer resolutions can uncover micro-level inequalities. Likewise, using a
single indicator (e.g. race or income) may mask intersecting vulnerabilities, whereas
cross-classifying and comparing multiple groups and spatial units can reduce bias in EJ
evaluations (Fried et al., 2024a). However, these technical decisions often stand-in for
more community-based participatory approaches to research, which can inform freight
policies that better reflect local knowledge and priorities (e.g. Garcia et al., 2013). Intersec-
tional approaches to health equity require transdisciplinary, multi-scalar, and recognitional
strategies, such as addressing environmental health disparities within broader political-
economic frameworks that also consider housing affordability, displacement, and labour
issues (Williams et al., 2023). These theory- and community-based elements represent a
major gap in freight-related equity research (Fried et al., 2024b).

6. Conclusion

This paper, through reviewing 36 empirical studies related to health equity impacts of
freight emissions, identifies the key contributors to health equity impacts, including
specific air pollutants, health endpoints, and disparities across population groups and
spatial units, laying the foundation for evaluating the health equity impacts of freight emis-
sions. It then provides the first state-of-the-art synthesis of widely used models in freight
demand modelling, air quality modelling, health effect estimation and disparity analysis.
Finally, it summarises available models and required data for each analytical stage in a
framework, providing an integrated methodology framework for this interdisciplinary issue.

This study has several limitations. First, the integrated framework is derived from exist-
ing literature and may not fully reflect regional variations in model and data availability.
Second, its application to specific freight scenarios may require further refinement, par-
ticularly in data-limited settings or diverse socio-economic conditions. Future research
should explore empirical validation and adaptation of the framework to real-world case
studies to enhance its applicability and robustness.

Even so, the contributions of this research are two-fold. This study first reviews the
methods and tools commonly used to evaluate health equity impacts of freight emissions,
providing a comprehensive overview of current methodologies. Second, given the lack of
a systematic framework that integrates available models for this evaluation, we develop
an integrated framework tailored to the freight sector and analyse the strengths and limit-
ations of available models at each analytical stage. This framework addresses gaps ident-
ifled in previous studies, offers multiple options for implementing evaluations, and
enhances flexibility to apply the suited models for research.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

Baden, B. M., Noonan, D. S., & Turaga, R. M. R. (2007). Scales of justice: Is there a geographic bias in
environmental equity analysis? Journal of Environmental Planning and Management, 50(2), 163—
185. https://doi.org/10.1080/09640560601156433


https://doi.org/10.1080/09640560601156433

TRANSPORT REVIEWS (&) 21

Badshah, H., Posada, F., & Muncrief, R. (2019). Current state of NO, emissions from in-use heavy-duty
diesel vehicles in the United States.

Beckx, C., Panis, L. |, Arentze, T., Janssens, D., Torfs, R,, Broekx, S., & Wets, G. (2009). A dynamic
activity-based population modelling approach to evaluate exposure to air pollution: Methods
and application to a Dutch urban area. Environmental Impact Assessment Review, 29(3), 179-
185. https://doi.org/10.1016/j.eiar.2008.10.001

Beelen, R., Hoek, G., Vienneau, D., Eeftens, M., Dimakopoulou, K., Pedeli, X., Tsai, M.-Y., Kiinzli, N.,
Schikowski, T., & Marcon, A. (2013). Development of NO2 and NOx land use regression models
for estimating air pollution exposure in 36 study areas in Europe - The ESCAPE project.
Atmospheric Environment, 72, 10-23. https://doi.org/10.1016/j.atmosenv.2013.02.037

Bickel, P., Friedrich, R., Link, H., Stewart, L., & Nash, C. (2006). Introducing environmental externalities
into transport pricing: Measurement and implications. Transport Reviews, 26(4), 389-415. https://
doi.org/10.1080/01441640600602039

Bickford, E., Holloway, T., Karambelas, A., Johnston, M., Adams, T., Janssen, M., & Moberg, C. (2014).
Emissions and air quality impacts of truck-to-rail freight modal shifts in the Midwestern United
States. Environmental Science & Technology, 48(1), 446-454. https://doi.org/10.1021/es4016102

Brook, R. D., Rajagopalan, S., Pope llI, C. A., Brook, J. R.,, Bhatnagar, A., Diez-Roux, A. V., Holguin, F.,
Hong, Y., Luepker, R. V., Mittleman, M. A., Peters, A., Siscovick, D., Smith, S. C, Whitsel, L., &
Kaufman, J. D. (2010). Particulate matter air pollution and cardiovascular disease: An update to
the scientific statement from the American Heart Association. Circulation, 121(21), 2331-2378.

Brusselaers, N., Macharis, C., & Mommens, K. (2023a). The health impact of freight transport-related
air pollution on vulnerable population groups. Environmental Pollution, 329, 121555. https://doi.
org/10.1016/j.envpol.2023.121555

Brusselaers, N., Macharis, C., & Mommens, K. (2023b). Rerouting urban construction transport flows
to avoid air pollution hotspots. Transportation Research Part D: Transport and Environment, 119,
103747. https://doi.org/10.1016/j.trd.2023.103747

Camilleri, S. F., Montgomery, A,, Visa, M. A, Schnell, J. L, Adelman, Z. E., Janssen, M., Grubert, E. A,
Anenberg, S. C,, & Horton, D. E. (2023). Air quality, health and equity implications of electrifying
heavy-duty vehicles. Nature Sustainability, 6(12), 1643-1653. https://doi.org/10.1038/541893-023-
01219-0

Cesaroni, G., Badaloni, C., Gariazzo, C., Stafoggia, M., Sozzi, R., Davoli, M., & Forastiere, F. (2013). Long-
term exposure to urban air pollution and mortality in a cohort of more than a million adults in
Rome. Environmental Health Perspectives, 121(3), 324-331. https://doi.org/10.1289/ehp.1205862

Cole, B. L., MacLeod, K. E., & Spriggs, R. (2019). Health impact assessment of transportation projects
and policies: Living up to aims of advancing population health and health equity? Annual Review
of Public Health, 40(1), 305-318. https://doi.org/10.1146/annurev-publhealth-040617-013836

Dong, Y., Polak, J,, Tretvik, T. K., Roche-Cerasi, I., Quak, H., Nesterova, N., & van Rooijen, T. (2018).
Electric freight vehicles for urban logistics — technical performance, economics feasibility and
environmental impacts. Proceedings of 7th Transport Research Arena TRA 2018, April 16-19,
2018, Vienna, Austria.

Dons, E., Panis, L. I, Van Poppel, M., Theunis, J., Willems, H., Torfs, R., & Wets, G. (2011). Impact of time
— activity patterns on personal exposure to black carbon. Atmospheric Environment, 45(21), 3594-
3602. https://doi.org/10.1016/j.atmosenv.2011.03.064

Faust, J., August, L., Slocombe, A., Prasad, S., Wieland, W., Cogliano, V., & Cummings, C. M. (2021).
California’s environmental justice mapping tool: Lessons and insights from CalEnviroScreen.
Environmental Law Reporter, 51, 10684.

Fried, T., Goodchild, A., Browne, M., & Sanchez-Diaz, |. (2024b). Seeking equity and justice in urban
freight: Where to look? Transport Reviews, 44(1), 191-212.

Fried, T., Goodchild, A. V., Sanchez-Diaz, I., & Browne, M. (2024a). Evaluating spatial inequity in last-
mile delivery: A national analysis. International Journal of Physical Distribution & Logistics
Management, 54(5), 501-522.

Garcia, A. P., Wallerstein, N., Hricko, A., Marquez, J. N., Logan, A., Nasser, E. G., & Minkler, M. (2013).
THE (Trade, Health, Environment) Impact Project: A community-based participatory research


https://doi.org/10.1016/j.eiar.2008.10.001
https://doi.org/10.1016/j.atmosenv.2013.02.037
https://doi.org/10.1080/01441640600602039
https://doi.org/10.1080/01441640600602039
https://doi.org/10.1021/es4016102
https://doi.org/10.1016/j.envpol.2023.121555
https://doi.org/10.1016/j.envpol.2023.121555
https://doi.org/10.1016/j.trd.2023.103747
https://doi.org/10.1038/s41893-023-01219-0
https://doi.org/10.1038/s41893-023-01219-0
https://doi.org/10.1289/ehp.1205862
https://doi.org/10.1146/annurev-publhealth-040617-013836
https://doi.org/10.1016/j.atmosenv.2011.03.064

22 Z.QINETAL.

environmental justice case study. Environmental Justice, 6(1), 17. https://doi.org/10.1089/env.
2012.0016

Gilmore, E. A., Heo, J., Muller, N. Z., Tessum, C. W., Hill, J. D., Marshall, J. D., & Adams, P. J. (2019). An
intercomparison of the social costs of air quality from reduced-complexity models. Environmental
Research Letters, 14(7), 074016. https://doi.org/10.1088/1748-9326/ab1ab5

Glazener, A., Sanchez, K, Ramani, T., Zietsman, J., Nieuwenhuijsen, M. J., Mindell, J. S., Fox, M., &
Khreis, H. (2021). Fourteen pathways between urban transportation and health: A conceptual
model and literature review. Journal of Transport & Health, 21, 101070. https://doi.org/10.1016/
jjth.2021.101070

Han, S. (2007). A route-based solution algorithm for dynamic user equilibrium assignments.
Transportation Research Part B: Methodological, 41(10), 1094-1113. https://doi.org/10.1016/j.trb.
2007.05.001

Hartle, J. C., Elrahman, O. S. A,, Wang, C.,, Rodriguez, D. A,, Ding, Y., & McGahan, M. (2022). Assessing
public health benefits of replacing freight trucks with cargo cycles in last leg delivery trips in
urban centers.

HEI. (2022). Systematic review and meta-analysis of selected health effects of long-term exposure to
traffic-related air pollution. HEI Special Report 23.

Hennessy, E. M., Scown, C. D., & Azevedo, I. M. (2024a). The health, climate, and equity benefits of
freight truck electrification in the United States. Environmental Research Letters, 19(10), 104069.
https://doi.org/10.1088/1748-9326/ad75a9

Hennessy, E. M., Singh, M., Saltzer, S., & Azevedo, |. M. (2024b). Pathways to zero emissions in
California’s heavy-duty transportation sector. Environmental Research: Infrastructure and
Sustainability, 4(3), 035001. https://doi.org/10.1088/2634-4505/ad54ed

Hu, S., Shu, S., Bishop, J.,, Na, X., & Stettler, M. (2022). Vehicle telematics data for urban freight
environmental impact analysis. Transportation Research Part D: Transport and Environment, 102,
103121. https://doi.org/10.1016/j.trd.2021.103121

Khan, S., & Hassan, Q. (2020). Review of developments in air quality modelling and air quality dis-
persion models. Journal of Environmental Engineering and Science, 16(1), 1-10. https://doi.org/
10.1680/jenes.20.00004

Kijewska, K., Konicki, W., & Iwan, S. (2016). Freight transport pollution propagation at urban areas
based on Szczecin example. Transportation Research Procedia, 14, 1543-1552. https://doi.org/
10.1016/j.trpro.2016.05.119

Koolik, L. H., Alvarado, A, Budahn, A., Plummer, L., Marshall, J. D., & Apte, J. S. (2024). PM2. 5 exposure
disparities persist despite strict vehicle emissions controls in California. Science Advances, 10(37),
eadn8544. https://doi.org/10.1126/sciadv.adn8544

Lathwal, P., Vaishnav, P., & Morgan, M. G. (2022). Environmental injustice in America: Racial dispar-
ities in exposure to air pollution health damages from freight trucking. arXiv preprint
arXiv:2204.06588.

Lee, G., Ritchie, S. G., Saphores, J.-D., Jayakrishnan, R., & Ogunseitan, O. (2012). Assessing air quality
and health benefits of the Clean Truck Program in the Alameda corridor, CA. Transportation
Research Part A: Policy and Practice, 46(8), 1177-1193. https://doi.org/10.1016/j.tra.2012.05.005

Lee, G, You, S. Ritchie, S. G, Saphores, J.-D., Sangkapichai, M., & Jayakrishnan, R. (2009).
Environmental impacts of a major freight corridor: A study of I-710 in California. Transportation
Research Record: Journal of the Transportation Research Board, 2123(1), 119-128. https://doi.
org/10.3141/2123-13

Lefebvre, W., Degrawe, B., Beckx, C., Vanhulsel, M., Kochan, B., Bellemans, T., Janssens, D., Wets, G.,
Janssen, S., & De Vlieger, I. (2013). Presentation and evaluation of an integrated model chain to
respond to traffic-and health-related policy questions. Environmental modelling & software, 40,
160-170. https://doi.org/10.1016/j.envsoft.2012.09.003

Liu, L, Hwang, T, Lee, S., Ouyang, Y., Lee, B., Smith, S. J., Tessum, C. W., Marshall, J. D., Yan, F,, &
Daenzer, K. (2019). Health and climate impacts of future United States land freight modelled
with global-to-urban models. Nature Sustainability, 2(2), 105-112. https://doi.org/10.1038/
$41893-019-0224-3


https://doi.org/10.1089/env.2012.0016
https://doi.org/10.1089/env.2012.0016
https://doi.org/10.1088/1748-9326/ab1ab5
https://doi.org/10.1016/j.jth.2021.101070
https://doi.org/10.1016/j.jth.2021.101070
https://doi.org/10.1016/j.trb.2007.05.001
https://doi.org/10.1016/j.trb.2007.05.001
https://doi.org/10.1088/1748-9326/ad75a9
https://doi.org/10.1088/2634-4505/ad54ed
https://doi.org/10.1016/j.trd.2021.103121
https://doi.org/10.1680/jenes.20.00004
https://doi.org/10.1680/jenes.20.00004
https://doi.org/10.1016/j.trpro.2016.05.119
https://doi.org/10.1016/j.trpro.2016.05.119
https://doi.org/10.1126/sciadv.adn8544
https://doi.org/10.1016/j.tra.2012.05.005
https://doi.org/10.3141/2123-13
https://doi.org/10.3141/2123-13
https://doi.org/10.1016/j.envsoft.2012.09.003
https://doi.org/10.1038/s41893-019-0224-3
https://doi.org/10.1038/s41893-019-0224-3

TRANSPORT REVIEWS (&) 23

Luo, J., Wang, C., Wallerstein, B., Barth, M., & Boriboonsomsin, K. (2022). Heavy-duty truck routing
strategy for reducing community-wide exposure to associated tailpipe emissions.
Transportation Research Part D: Transport and Environment, 107, 103289. https://doi.org/10.
1016/j.trd.2022.103289

Ma, T., Li, C,, Luo, J., Frederickson, C,, Tang, T., Durbin, T. D., Johnson, K. C., & Karavalakis, G. (2023). In-
use NOx and black carbon emissions from heavy-duty freight diesel vehicles and near-zero emis-
sions natural gas vehicles in California’s San Joaquin Air Basin. Science of The Total Environment,
907, 168188.

Mac Kinnon, M., Zhu, S., Cervantes, A., Dabdub, D., & Samuelsen, G. (2021). Benefits of near-zero
freight: The air quality and health impacts of low-NOx compressed natural gas trucks. Journal
of the Air & Waste Management Association, 71(11), 1428-1444. https://doi.org/10.1080/
10962247.2021.1957727

Malik, L., Tiwari, G., Thakur, S., & Kumar, A. (2019). Assessment of freight vehicle characteristics and
impact of future policy interventions on their emissions in Delhi. Transportation Research Part D:
Transport and Environment, 67, 610-627. https://doi.org/10.1016/j.trd.2019.01.007

Matthias, V., Arndt, J. A, Aulinger, A, Bieser, J., Denier van der Gon, H., Kranenburg, R., Kuenen, J.,
Neumann, D., Pouliot, G., & Quante, M. (2018). Modeling emissions for three-dimensional atmos-
pheric chemistry transport models. Journal of the Air & Waste Management Association, 68(8),
763-800. https://doi.org/10.1080/10962247.2018.1424057

Madziel, M. (2023). Vehicle emission models and traffic simulators: A review. Energies, 16(9), 3941.
https://doi.org/10.3390/en16093941

McNeil, W. H., Tong, F., Harley, R. A., Auffhammer, M., & Scown, C. D. (2023). Corridor-level impacts of
battery-electric heavy-duty trucks and the effects of policy in the United States. Environmental
Science & Technology, 58(1), 33-42. https://doi.org/10.1021/acs.est.3c05139

Minet, L., Chowdhury, T., Wang, A, Gai, Y., Posen, I. D., Roorda, M., & Hatzopoulou, M. (2020).
Quantifying the air quality and health benefits of greening freight movements. Environmental
research, 183, 109193. https://doi.org/10.1016/j.envres.2020.109193

Mommens, K., Brusselaers, N., Van Lier, T., & Macharis, C. (2019). A dynamic approach to measure the
impact of freight transport on air quality in cities. Journal of Cleaner Production, 240, 118192.
https://doi.org/10.1016/j.jclepro.2019.118192

Moretti, A., Luo, J., Boriboonsomsin, K., & Barth, M. (2021). Reducing community exposure to freigh-
trelated air pollution through exposure-based truck routing. In Bridging the gap between emission
simulators and near-road PM2, 5 measurements (pp. 86-118).

Mueller, N., Rojas-Rueda, D., Cole-Hunter, T., de Nazelle, A., Dons, E., Gerike, R., Gotschi, T., Int Panis,
L., Kahlmeier, S., & Nieuwenhuijsen, M. (2015). Health impact assessment of active transportation:
A systematic review. Preventive Medicine, 76, 103-114. https://doi.org/10.1016/j.ypmed.2015.04.
010

Oranges Cezarino, L., Baesse, L., Ronquim Filho, A., & Freitas, M. (2021). Every breath you take. Every
freight you make: environmental pollution index for road transportation. Brazilian Journal of
Operations & Production Management, 19(1), 1-17. https://doi.org/10.14488/BJOPM.2021.038

Pan, S., Roy, A., Choi, Y., Sun, S., & Gao, H. O. (2019). The air quality and health impacts of projected
long-haul truck and rail freight transportation in the United States in 2050. Environment
International, 130, 104922. https://doi.org/10.1016/j.envint.2019.104922

Park, G. Y. (2022). Emissions analysis of the port drayage truck replacement program and local air
quality: The case of the port of New York and New Jersey. Case Studies on Transport Policy,
10(2), 1407-1416. https://doi.org/10.1016/j.cstp.2022.05.004

Patton, A. P., Boogaard, H., Vienneau, D., Brook, J. R., Smargiassi, A., Kutlar Joss, M., Szpiro, A. A., Sagiv,
S. K., Samoli, E., Hoffmann, B., Chang, H. H., Atkinson, R. W., Weuve, J., Forastiere, F., Lurmann, F.
W., & Hoek, G. (2024). Assessment of long-term exposure to traffic-related air pollution: An
exposure framework. Journal of Exposure Science & Environmental Epidemiology, 35(3), 493-501.

Ramani, T., Jaikumar, R, Khreis, H., Rouleau, M., & Charman, N. (2019). Air quality and health impacts
of freight modal shifts: Review and assessment. Transportation Research Record: Journal of the
Transportation Research Board, 2673(3), 153-164. https://doi.org/10.1177/0361198119834008


https://doi.org/10.1016/j.trd.2022.103289
https://doi.org/10.1016/j.trd.2022.103289
https://doi.org/10.1080/10962247.2021.1957727
https://doi.org/10.1080/10962247.2021.1957727
https://doi.org/10.1016/j.trd.2019.01.007
https://doi.org/10.1080/10962247.2018.1424057
https://doi.org/10.3390/en16093941
https://doi.org/10.1021/acs.est.3c05139
https://doi.org/10.1016/j.envres.2020.109193
https://doi.org/10.1016/j.jclepro.2019.118192
https://doi.org/10.1016/j.ypmed.2015.04.010
https://doi.org/10.1016/j.ypmed.2015.04.010
https://doi.org/10.14488/BJOPM.2021.038
https://doi.org/10.1016/j.envint.2019.104922
https://doi.org/10.1016/j.cstp.2022.05.004
https://doi.org/10.1177/0361198119834008

24 Z.QINETAL.

Ramirez-lbarra, M., & Saphores, J.-D. M. (2023). Health and equity impacts from electrifying drayage
trucks. Transportation Research Part D: Transport and Environment, 116, 103616. https://doi.org/10.
1016/j.trd.2023.103616

Rojas-Rueda, D., Norberciak, M., & Morales-Zamora, E. (2024). Advancing health equity through 15-
min cities and chrono-urbanism. Journal of Urban Health, 101(3), 483-496. https://doi.org/10.
1007/511524-024-00850-2

Ross, C. L., Amekudzi, A., Guhathakurta, S., & Welch, T. F. (2015). Freight impacts on small urban and
rural areas.

Sahin, O., Zuniga-Garcia, N., & Stinson, M. (2023). Equity analysis of freight transportation using a
large-scale agent-based modeling framework. Procedia Computer Science, 220, 692-697.
https://doi.org/10.1016/j.procs.2023.03.090

Saw, K., Katti, B. K., & Joshi, G. (2015). Literature review of traffic assignment: static and dynamic.
International Journal of Transportation Engineering, 2(4), 339-347.

Seo, J. H., Wen, F., Minjares, J., & Choi, S. (2013). Environmental justice for minority and low-income
populations next to goods movement corridors in Southern California. Transportation Research
Record: Journal of the Transportation Research Board, 2357(1), 50-57. https://doi.org/10.3141/
2357-06

Slaughter, J. C, Kim, E., Sheppard, L., Sullivan, J. H., Larson, T. V., & Claiborn, C. (2005). Association
between particulate matter and emergency room visits, hospital admissions and mortality in
Spokane, Washington. Journal of Exposure Science & Environmental Epidemiology, 15(2), 153—
159. https://doi.org/10.1038/sj.jea.7500382

Tavasszy, L. A, Ruijgrok, K., & Davydenko, I. (2012). Incorporating logistics in freight transport
demand models: State-of-the-art and research opportunities. Transport Reviews, 32(2), 203-219.
https://doi.org/10.1080/01441647.2011.644640

Tavasszy, L., & de Bok, M. (2023). Overview of urban freight transport modelling. In Handbook on city
logistics and urban freight (pp. 60-77). Edward Elgar Publishing.

Tessum, C. W., Apte, J. S., Goodkind, A. L., Muller, N. Z., Mullins, K. A, Paolella, D. A., Polasky, S.,
Springer, N. P., Thakrar, S. K., & Marshall, J. D. (2019). Inequity in consumption of goods and ser-
vices adds to racial — ethnic disparities in air pollution exposure. Proceedings of the National
Academy of Sciences, 116(13), 6001-6006. https://doi.org/10.1073/pnas.1818859116

Tessum, C. W., Hill, J. D., & Marshall, J. D. (2017). InMAP: A model for air pollution interventions. PLoS
One, 12(4), e0176131. https://doi.org/10.1371/journal.pone.0176131

Thind, M. P, Tessum, C. W., & Marshall, J. D. (2022). Environmental health, racial/ethnic health dis-
parity, and climate impacts of inter-regional freight transport in the United States.
Environmental Science & Technology, 57(2), 884-895. https://doi.org/10.1021/acs.est.2c03646

Tong, F., Jenn, A, Wolfson, D., Scown, C. D., & Auffhammer, M. (2021). Health and climate impacts
from long-haul truck electrification. Environmental Science & Technology, 55(13), 8514-8523.
https://doi.org/10.1021/acs.est.1c01273

Torbatian, S., Saleh, M., Xu, J., Minet, L., Gamage, S. M., Yazgi, D., Yamanouchi, S., Roorda, M. J,, &
Hatzopoulou, M. (2024). Societal co-benefits of zero-emission vehicles in the freight industry.
Environmental Science & Technology, 58(18), 7814-7825. https://doi.org/10.1021/acs.est.3c08867

Vallamsundar, S., Lin, J., Konduri, K., Zhou, X., & Pendyala, R. M. (2016). A comprehensive modeling
framework for transportation-induced population exposure assessment. Transportation Research
Part D: Transport and Environment, 46, 94-113. https://doi.org/10.1016/j.trd.2016.03.009

Wen, Y., Yu, Q, He, B. Y., Ma, J., Zhang, S., Wu, Y., & Zhu, Y. (2024). Persistent environmental injustice
due to brake and tire wear emissions and heavy-duty trucks in future California zero-emission
fleets. Environmental Science & Technology, 58(43), 19372-19384. https://doi.org/10.1021/acs.
est.4c04126

Williams, P. C,, Binet, A., Alhasan, D. M,, Riley, N. M., & Jackson, C. L. (2023). Urban planning for health
equity must employ an intersectionality framework. Journal of the American Planning Association,
89(2), 167-174. https://doi.org/10.1080/01944363.2022.2079550

Xiao, T., Qin, Z,, Lu, Y., Chao, Y., Yang, C, & Yuan, Q. (2024). Reexamining exposure from truck emis-
sions considering daily movement of individuals. Transportation Research Part D: Transport and
Environment, 136, 104441. https://doi.org/10.1016/j.trd.2024.104441


https://doi.org/10.1016/j.trd.2023.103616
https://doi.org/10.1016/j.trd.2023.103616
https://doi.org/10.1007/s11524-024-00850-2
https://doi.org/10.1007/s11524-024-00850-2
https://doi.org/10.1016/j.procs.2023.03.090
https://doi.org/10.3141/2357-06
https://doi.org/10.3141/2357-06
https://doi.org/10.1038/sj.jea.7500382
https://doi.org/10.1080/01441647.2011.644640
https://doi.org/10.1073/pnas.1818859116
https://doi.org/10.1371/journal.pone.0176131
https://doi.org/10.1021/acs.est.2c03646
https://doi.org/10.1021/acs.est.1c01273
https://doi.org/10.1021/acs.est.3c08867
https://doi.org/10.1016/j.trd.2016.03.009
https://doi.org/10.1021/acs.est.4c04126
https://doi.org/10.1021/acs.est.4c04126
https://doi.org/10.1080/01944363.2022.2079550
https://doi.org/10.1016/j.trd.2024.104441

TRANSPORT REVIEWS (&) 25

Yuan, Q. (2018). Mega freight generators in my backyard: A longitudinal study of environmental
justice in warehousing location. Land Use Policy, 76, 130-143. https://doi.org/10.1016/j.
landusepol.2018.04.013

Zalzal, J., & Hatzopoulou, M. (2022). Fifteen years of community exposure to heavy-duty emissions:
Capturing disparities over space and time. Environmental Science & Technology, 56(23), 16621-
16632. https://doi.org/10.1021/acs.est.2c04320

Zhang, R, Wang, Y., Pang, Y., Zhang, B., Wei, Y., Wang, M., & Zhu, R. (2022). A deep learning micro-
scale model to estimate the CO2 emissions from light-duty diesel trucks based on real-world
driving. Atmosphere, 13(9), 5.

Zhang, S., Wu, Y., Yan, H,, Du, X,, Zhang, K. M., Zheng, X,, Fu, L., & Hao, J. (2019). Black carbon pol-
lution for a major road in Beijing: Implications for policy interventions of the heavy-duty truck
fleet. Transportation Research Part D: Transport and Environment, 68, 110-121. https://doi.org/
10.1016/j.trd.2017.07.013

Zhou, J,, & Dai, S. (2012). Urban and metropolitan freight transportation: A quick review of existing
models. Journal of Transportation Systems Engineering and Information Technology, 12(4), 106-
114. https://doi.org/10.1016/S1570-6672(11)60214-6


https://doi.org/10.1016/j.landusepol.2018.04.013
https://doi.org/10.1016/j.landusepol.2018.04.013
https://doi.org/10.1021/acs.est.2c04320
https://doi.org/10.1016/j.trd.2017.07.013
https://doi.org/10.1016/j.trd.2017.07.013
https://doi.org/10.1016/S1570-6672(11)60214-6

	Abstract
	1. Introduction
	2. Stages of evaluating health equity impacts of freight emissions
	3. Methodology
	4. Results
	4.1. Assessing contributors to health equity impacts of freight emissions
	4.1.1 Air pollutants
	4.1.2 Health endpoints
	4.1.3 Disparities in population groups and spatial units

	4.2. Freight demand modelling
	4.2.1 Freight trip generation
	4.2.2 Traffic assignment and simulation

	4.3. Emission and air quality modelling
	4.3.1 Emissions estimation
	4.3.2 Air pollution concentration estimation

	4.4. Health effect estimation
	4.5. Disparity analysis
	4.5.1 Population group comparisons
	4.5.2 Spatial unit comparisons


	5. Discussion
	5.1. Key takeaways of integrated framework
	5.2. Implications and application

	6. Conclusion
	Disclosure statement
	References

