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Loading ships as they are unloaded (double cycling) can improve the efficiency of a quay crane and container
port. This paper describes the double-cycling problem, and presents solution algorithms and simple formu-

lae to determine reductions in the number of operations and operating time using the technique. We focus on
reducing the number of operations necessary to turn around a row of a ship. The problem is first formulated as
a scheduling problem, which can be solved optimally. A simple lower bound for all strategies is then developed.
We also present a greedy algorithm that yields a simple and tight upper bound. The gap between the upper
and lower bounds is so small that the formula for either bound is an accurate predictor of crane performance.
The analysis is then extended to double cycling when ships have deck hatches. Results are presented for many
simulated vessels, and compared to empirical data from a real-world trial. The research demonstrates that dou-
ble cycling can create significant efficiency gains in crane productivity, typically reducing the number of cycles
by about 20% and the operational time by about 10% when double cycling only below deck.
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Introduction
The volume of goods moved by container through
the U.S. transportation system has grown dramati-
cally over the past 15 years, but infrastructure has
not been developed at a similar rate. In 2004, peak
levels of container traffic through major U.S. West
Coast ports jumped approximately 15% from the pre-
vious year. This caused significant port congestion;
for example, containers required an additional week
just to be moved from vessels through the marine
terminals (Mongelluzzo 2005a). There is no reason
to believe that this growth will not continue, except
that our inland transportation infrastructure will not
have sufficient capacity to carry it. This growth in
container volumes will require additional capacity on
the freight transportation network and through ports,
in particular. Strategies are required that speed the
movement of freight through the system, and specifi-
cally through terminals. In this research we consider
such a strategy. Quay cranes are the most expensive
single unit of handling equipment in port container
terminals; because of this, one of the key opera-
tional bottlenecks at ports is quay crane availabil-
ity (Crainic and Kim 2005). By improving quay-crane

efficiency, ports can reduce ship turn-around time,
improve port productivity, and improve throughput
in the freight transportation system. The research pre-
sented in this paper addresses the key bottleneck to
port productivity: quay-crane efficiency. In contrast to
other measures to increase capacity such as terminal
expansion and information technology deployments,
double cycling, the method considered here, is a low-
cost method to increase capacity; it does not require
new technology or infrastructure. Although double
cycling will not solve the capacity problem in the
long term, it can be more quickly implemented than
other solutions, and can be used to complement other
strategies.
Double cycling is a technique that can be used to

improve the efficiency of quay cranes by eliminating
some empty crane moves. Instead of using the cur-
rent method, where often all relevant containers are
unloaded from the vessel before any are loaded (single
cycling), containers are loaded and unloaded simulta-
neously (see Figure 1). This allows the crane to carry
a container while moving from the apron to the ship
(one move), as well as from the ship to the apron, thus
doubling the number of containers transported in
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Single cycling Double cycling

Unload
container

Unload
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without
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(a) (b)

Figure 1 (a) Unloading Using Single Cycling; (b) Unloading and
Loading with Double Cycling

a cycle (or two moves). This crane efficiency improve-
ment can be used to reduce ship turn-around time
and therefore improve port throughput, and address
the capacity problem.
In their efforts to increase productivity, ports

have undertaken various projects such as renovat-
ing and adding terminals, constructing and expand-
ing intermodal facilities, and implementing new
IT infrastructure (Mongelluzzo 2005b). Because crane
productivity is so important, ports have also invested
in various crane utilization improvement strategies.
For example, dual hoist cranes have been developed
that separate the crane’s cycle into two subcycles
that can be operated independently. Although dou-
ble cycling is used to a limited extent in practice, and
small-scale trials have been undertaken (TranSystems
Corporation 2003), a broad implementation of double
cycling has not occurred. One of the reasons for this is
that small-scale trials have understated the benefits of
double cycling which, as we will show, increase with
ship size. The absence of a rigorous analysis of the
efficiencies of double cycling leaves open the question
of its impact on crane operations. This paper attempts
to fill this void.
Because the necessary operational changes with

double cycling are not well understood, some oper-
ators doubt that its benefits can overcome its opera-
tional costs. To alleviate this concern, we will assume
the ship’s loading plans are given, and that they
are the same with and without double cycling.
This is desirable, because shipping lines use soft-
ware tools to create loading plans that accommo-
date, amongst other concerns, (a) vessel stability
requirements, (b) priority of delivery, (c) placement
constraints on hazardous materials, (d) refrigerated
containers, (e) above- and below-deck storage, and
(f) strategies to minimize the number of cycles nec-
essary to unload containers at subsequently visited
ports. From these tools, a sequence of operations
is generated for the crane operator, foreman (who
directs landside operations), and terminal manage-
ment system. When considering the benefits of dou-
ble cycling, we assumed that existing planning tools

had been used to create a loading plan, as is cur-
rent practice, and that this loading plan has made
no accommodations for double cycling. We there-
fore consider changes only to the crane’s sequence
of operations. In practice, this would be determined
at a planning stage, and the crane operator would
be given a sequence of operations to carry out, in
the same way that a sequence of operations is given
when performing single-cycle operations. This way
we demonstrate that double cycling is feasible and
beneficial without changing the quayside operations.
Double cycling does require some changes, but as
described in Goodchild (2005), they are minor and
beneficial, on the whole.
Problems of port design and operation are the

subject of much academic research (see §1), and
are currently the subject of much political attention
(California State Assembly Bill 2650, 2002–2003, and
2042, 2003–2004); nevertheless, to date no study on
double cycling has appeared in a scholarly journal.
The ideas presented here are not meant to substitute
for detailed terminal and vessel planning programs,
which are well suited to managing a specific vessel
and terminal configuration, but to provide portable
insights into double cycling at a more general level.

1. Literature Review
A significant amount of operational research has
addressed port problems. These works typically focus
on strategic design planning issues such as the num-
ber of berths (Schonfeld and Sharafeldien 1985),
the size of storage space (Kim and Kim 2002), the
number of various pieces of equipment to install
(Vis, de Koster, and Roodbergen 2001), and the
trade-offs inherent in these choices (Taleb-Ibrahimi,
Castilho, and Daganzo 1993). Also addressed are
operational planning and control problems, including
berth scheduling (Park and Kim 2003), berth assign-
ment (Imai, Nishimura, and Papadimitriou 2001),
quay-crane scheduling (Daganzo 1989; Peterofsky and
Daganzo 1990), stowage planning and sequencing
(Christiansen et al. 2005; Kim, Kang, and Ryu 2004),
storage space planning (Castilho and Daganzo 1993),
and dispatching of yard cranes and prime movers
(Kim and Bae 1999). To date, most of this work utilizes
queueing theory and stochastic models (Daganzo
1989), simulation (Lai and Leung 2000), and classical
operations research techniques such as routing, net-
work, and scheduling problems (Kim and Kim 2002).
The operations research literature, however, has not
yet addressed the double-cycling problem.
The only scientific work appears to be in the mar-

itime economics literature, where researchers have
explained the productivity gains from hatchless ships
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when double cycling is used (Bendall and Stent 1996).
The work illustrates the impact that double cycling
can have not just on port operation, but also on ship
design. This work assumes that all containers except
those above hatches can be double cycled, but does
not address operational concerns.
Our paper examines these operational aspects. In

the next section a framework is set for analysis of the
problem. Section 2 also includes an example that is
used to illustrate the problem’s basic properties. In §3
we discuss a scheduling formulation to the prob-
lem. A lower bound to the problem is developed
in §4. Section 5 presents the greedy algorithm and
bounds its results from above. In §6 the problem is
extended to accommodate ships with deck hatches.
In §7 we develop a formula to convert benefits from
number of cycles to an amount of time, compare
results to empirical data, present the results of a com-
puter program, and consider the economic impact of
double cycling.

2. Modeling Framework
The layout of containers on a ship can be modelled
as a three-dimensional matrix. Containers are stacked
on top of one another, and arranged in rows (see Fig-
ure 2). One row stretches across the width of the ship.
Large container vessels today typically hold 20 stacks
of containers across the width of the ship, and up to
20 stacks along the length of the ship (40-foot equiv-
alent units). Of course, we expect these figures to
increase with the market penetration of Malacca-max
carriers. Figure 2 gives a top and side view of a typi-
cal vessel (although the number of container stacks is
not representative).

Stack label

Side view

Plan view

Stack

Row

Container

A

B
C

D

E
F G

H

I

Figure 2 Plan and Side Views of a Simplified Ship
Note. Number of containers shown not representative of typical ship size.

The complete operating cycle of the crane can be
broken down into the following components:
(1) Locking to or unlocking from a container;
(2) Horizontal motion of the trolley, or trolley and

container, across the ship;
(3) Vertical motion of the trolley, or trolley and con-

tainer.
Between some crane cycles the crane may also

move lengthwise along the ship. It is important to
point out that the number of locking and unlock-
ing operations is not affected by double cycling. In
this research we will assume that dockside contain-
ers are ready for loading when required, and con-
tainers being unloaded can be quickly removed from
the immediate area. In the initial analysis it will be
assumed that ships lack hatch coverings, or doors on
the deck that separate above-deck and below-deck
storage. This assumption will be relaxed in §6.
Consider the case where a ship arrives in port with

a set of containers on board to be unloaded and a
loading plan for containers to be loaded. The load-
ing plan indicates the placement of containers on the
ship. Given are uc and lc, the number of containers
to be unloaded and loaded, respectively, in each stack
labelled c. Figure 3 is an example problem that will
be used for illustrative purposes. Notice that in Fig-
ure 3, uA = 3 and lA = 2. A rehandle is a container
that must be moved to access containers below it, but
will be stowed again before the ship departs. Note
that if any rehandles are necessary, we include these
in the total number of loads and unloads. For exam-
ple, if, during unloading, a container must be moved
to access a container beneath it, the container moved
will be counted as an unload. This container would
then also be counted as a load when it is placed back
in the original stack. We always assume that rehan-
dles are replaced in the stack from which they were

Containers to unload: uA

Containers to load: lDRehandles

A B C D A B C D

Key:

Container to be rehandled

Container to unload

Container for load

Container to stray on vessel

Figure 3 Detailed Plan for Containers to be Unloaded and Loaded
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removed. Note that this will overestimate the amount
of work necessary to unload and load a set of contain-
ers because the container is considered moved from
the vessel to the shore and back to a location on the
vessel. In this research we consider a move to be
between the vessel and the apron, but in reality some
rehandles may only be moved between locations on
the vessel, typically a shorter distance.
If we consider that the time it takes to unload and

load a ship is a measure of crane efficiency, then the
goal of double cycling is to reduce the total turn-
around time. A proxy for this is the number of cycles
required to unload and load the ship. The number
of cycles necessary to complete loading and unload-
ing will be represented by the variable w. We will
consider double cycling within one row of the ship.
Due to the difficulty with which the crane moves lat-
erally along the ship, it is not practical to consider
double cycling across two rows. We will complete
unloading and loading of one row before moving the
crane lengthwise along the ship to the next row. We
will consider time savings in §7, including the time
required for the crane to move laterally along the ves-
sel. A key feature of double cycling is the order in
which the stacks within each row are handled; this is
explained below.
Let S denote the set of stack labels in a row, �S� =N

the number of stacks in the set, and � a permuta-
tion of S indicating an ordering of the stacks. A per-
mutation is a one-to-one correspondence between the
set of n ∈ 
1� � � � �N  and c ∈ S, such that ��n� = c, or
n = �−1�c�. For example, in Figure 3, the set of stack
labels is S = 
A�B�C�D. A permutation of these is

B�A�C�D given by the function �e where �e�1�= B,
�e�2� = A, �e�3� = C, and �e�4� = D. We will restrict
our attention to special cases of the generic double-
cycling method described below.
• Choose an unloading permutation, �′. Unload

all containers in the first stack of the permutation,
then all containers in the second stack of the permuta-
tion, proceed in this fashion until all stacks have been
unloaded.
• Choose a loading permutation, �, and load the

stacks in that order. Load all containers in the first
stack, then in the second, and so on. Loading can start
in any stack as soon as it is empty or it contains just
containers that should not be unloaded at this port.
Once loading has begun in a stack, continue loading
until that stack is complete.
In all cases of single or double cycling, we assume

that the crane starts and finishes on the dock.
Figure 4(a) is a diagram for a single-cycling opera-

tion where the stacks of Figure 3 are handled in the
order 
A�B�C�D both for loading and unloading.
Time is expressed in cycles. Note that loading oper-
ations must wait until cycle w = 10, when unloading
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Unloads Loads

Figure 4 Turn-Around Time with Different Methods
Notes. (a) Single cycling with ordering A, B, C, D unloading starts at w =
10, 20 cycles. (b) Double cycling with ordering A, B, C, D unloading starts
at w = 4, 14 cycles. (c) Double cycling with ordering A, B, C, D unloading
starts at w = 3, 14 cycles. (d) Double-cycling ordering B, A, C, D unloading
starts at w = 3, 13 cycles.

is finished. The process requires w = 20 cycles. With
single cycling, we assume the crane unloads each row
of the vessel before loading any containers.
If we double cycle, we can still plot the unload-

ing curve on the same diagram. Now, using the
same sequence for unloading and loading, �′ = � =
A�B�C�D, we can shift the loading curve to the left
as far as possible without overlapping the unloading
curve. Figure 4(b) shows the maximum shift. Load-
ing can start as early as w = 4 and the process would
require only 14 cycles. The same number of cycles is
obviously obtained if we start loading each stack as
early as possible, as in Figure 4(c). This introduces
some delay as the loading operations must wait one
cycle for the unloading operations to be completed in
stack B, but does not change the completion time.
With single cycling one cycle is required for every

container. With double cycling, however, the number
of cycles will depend on the sequence. Figure 4(d)
shows that if the loading and unloading sequence is
B, A, C, D, then the completion time is w = 13.
This framework considers the work of one crane,

working on individual rows of a vessel. This does not
limit our analysis to operations where only one crane
works each vessel, because it can be reproduced for
each crane, assuming the working areas of the vessel
can be segmented by crane. A scheduling formulation
for this problem is discussed in §3.
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3. Scheduling Approach
Although double cycling involves only one physical
machine (the quay crane), the problem can be formu-
lated as a two-machine flow shop scheduling prob-
lem where one job corresponds to one stack and each
job has two operations: an unloading operation that
must be completed first, and a subsequent loading
operation. The crane performs as the loading machine
when its trolley is moving from the apron to the ves-
sel and performs as the unloading machine when its
trolley is moving from the vessel to the apron. We can
assume that there is a separate machine for loading
and another for unloading because in every cycle the
crane can perform exactly one task of each type. As
a result, the number of crane cycles available to do
a task of either type is unaffected by what the crane
does with tasks of the other type. Thus, the crane can
operate on both tasks in the same way that two inde-
pendent machines could handle one container per
cycle.
Our problem is to determine the best unloading

and loading sequences to minimize the maximum
completion time (makespan). The formulation (shown
in the appendix) includes a technological constraint:
Stacks must be unloaded before they are loaded, but
no precedence constraints. We assume all rehandles
(containers that must be moved to access another con-
tainer, but are to stay on the vessel) are loaded back
into the stack from which they are unloaded, and that
there are no constraints on the order in which a set of
stacks is operated on by an individual machine (load-
ing or unloading).
This problem can be solved optimallywith Johnson’s

rule (1954). It has three key features. First, the as-
sumption of uninterrupted loading and unloading of
stacks is not restrictive; preemption cannot improve
the solution. Second, it is sufficient to consider sched-
ules in which the processing orders on the two
machines are identical. Third, if the processing times
are interchanged, then an equivalent inverse problem
results.
Although Johnson’s rule can be used to determine

the optimal sequence for a specific vessel, it does not
yield a simple formula for the number of cycles that
could be used for port planning. In the next sections
we develop such formulae. We start with a lower
bound to the optimum.

4. A Lower Bound
Define

Y =
N∑

n=1
u�′�n� =

∑
c∈S

uc� and �=
N∑

n=1
l��n� =

∑
c∈S

lc (1)

as the total number of containers to unload and load.
Recall from Figure 4(a) that, using single cycling, the

number of cycles necessary to complete a row equals
the number of containers to be moved:

Y +�� (2)

For double cycling, with a specific loading permuta-
tion � and unloading permutation �′, the number of
cycles, w, must be at least �+u�′�1�. Obviously, then,

w ≥�+u�′�1� ≥�+min
c

�uc�� (3)

Similarly, w must also be at least Y + l��1�, and
therefore

w ≥ Y + l��1� ≥ Y +min
c

�lc�� (4)

It follows that the number of cycles must satisfy for
any � and �′ (including the optimum):

w ≥max
{
�+min

c
�uc��Y +min

c
�lc�

}
� (5)

This is the proposed lower bound. We will now dis-
cuss an algorithm that provides an equally simple
upper bound.

5. A Greedy Strategy and an Upper
Bound

We propose to unload and load each stack as soon
as possible, assuming that the loading and unloading
sequences are given by the same greedy permutation,
�′ = � = G. The greedy permutation is obtained by
ordering the stacks in descending order of the vari-
able dc where

dc = lc −uc when �≥ Y (6)

dc = uc − lc when Y > �� (7)

The rationale for Equations (6) and (7) is that we want
the unloading operations to run ahead of the loading
operations as much as possible.
We will assume in this section that stacks have been

labelled by position in the handling sequence with
the greedy strategy. So now uj and lj are the num-
bers of containers to be unloaded and loaded in the
jth stack, j = 1� � � � � J , where the sequence is given by
the greedy strategy. We also define Uj as the cumula-
tive time (in number of cycles) at which the jth stack
is finished unloading: Uj = u1+u2+· · ·+uj , and Lj as
the combined operational time (in number of cycles)
to load j stacks: Lj = l1+ l2+ · · ·+ lj .
Assume now that there are more loads than

unloads, � ≥ Y . In this case, dj = lj − uj and Dj =
Lj −Uj = d1+d2+· · ·+dj . Notice that dj ≤ dj−1 because
our strategy is greedy. Notice also that DJ =

∑
c∈S dc =

�−Y ≥ 0 because there are more (or equal) loads than
unloads.

Lemma 1. If there are more (or equal) loads than un-
loads, then Dj ≥ 0 ∀ j .
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Proof. Because there are more (or equal) loads
than unloads, DJ ≥ 0. Assume now that Dj < 0 for
some j . For Dj to be negative, one of its components,
dk, must be negative for some k ≤ j . This, however,
would mean that dr < 0 ∀ r ≥ k, and also for r ≥ j
(because the dj sequence is decreasing for the greedy
strategy). Hence, DJ = Dj + dj+1 + · · · + dJ is a sum
of negative terms and would be negative, but this is
a contradiction. Thus, there cannot be a Dj < 0 for
some j . �

Lemma 2. If there are more (or equal) loads than un-
loads, the number of cycles to complete operations with the
greedy strategy, wG, satisfies wG ≤�+maxc
uc.

Proof. We assume that the loading operation is
artificially postponed to a time s (number of cycles
after the beginning of the loading operation) that
avoids loading delays. The completion time with
postponed loading is therefore �+s. Because the start
of loading is postponed, this completion time must
exceed or equal wG, and can be used as an upper
bound. If there are no intermediate delays, then the
time to begin loading the jth stack, Bj , is Bj = s+Lj−1,
i.e., the shift plus the time to load j − 1 stacks (define
L0 = 0). We now look for the smallest s that guar-
antees that there are no intermediate delays to load-
ing, i.e., that Bj − Uj ≥ 0, ∀ j . Note that 
Bj − Uj =
!s − uj" + !Lj−1 − Uj−1" and that the first term on the
right side is nonnegative if we choose s =maxc∈S
uc.
We also see that the second term is nonnegative by
Lemma 1. Thus, Bj − Uj ≥ 0, ∀ j , if s = maxc∈S
uc.
�+ s =�+maxc∈S
uc is an upper bound to wG, and
so the lemma is proven. �

Lemma 3. If �≤ Y , then wG ≤ Y +maxc
lc.

Proof. G in this case is defined by Equation (7).
That Lemma 3 is true should be obvious by sym-
metry, because time reversals map any problem into
its inverse. (If one were to videotape the process of
unloading and loading the row, and then play this
recording in reverse, the reversed video would dis-
play a sequence of operations with the same total
time as for a problem in which the role of loads and
unloads is switched.) �

The results from Equation (5), Lemma 2, and
Lemma 3 can be neatly summarized if we define
u′ = minc�uc�, l′ = minc�lc�, u∗ = maxc
uc, and l∗ =
maxc
lc. The following is true:

Theorem 1. max
� + u′�Y + l′ ≤ w∗ ≤ wG ≤
max
�+u∗�Y + l∗.

For large ships where 
��Y  � �u∗� l∗�, the upper
and lower bounds are very close to each other. In fact,
if uc and lc are bounded by a constant (stack size),
then the gap between the upper and lower bound
vanishes as the number of stacks (problem size) tends
to infinity. We now consider ships with deck hatches.

Top view

Figure 5 Hatched Ship
Note. Top and side views of a ship with hatch coverings.

6. Deck Hatches
Today most container ships have hatch coverings, as
shown in Figure 5. These are large steel plates that
separate above-deck and below-deck storage. They
normally cover one-third of a single row. Figure 5 dis-
plays a vessel three hatches wide, with five stacks of
containers above and five stacks below each hatch.
A typical stack includes up to eight containers above
deck and a similar number below. Hatches change the
nature of the problem, because the stacks cannot be
handled without interruption. To access the contain-
ers below a hatch all containers must be unloaded
from above the hatch, and before loading containers
atop a hatch all containers below the hatch must be
loaded.
We propose a decomposition algorithm that reduces

the problem of handling a hatched row to a sequence
of problems already addressed in this paper. As in
the hatchless case, each stack on the row is given an
initial label. To carry out the strategy it is necessary to
1. Order the hatches using a greedy strategy using

the same method as for the hatchless case. Treat the
hatches as stacks, considering only the containers atop
the hatches.
2. Order the stacks within each hatch using a greedy

strategy, considering only the containers below deck.
The algorithm is then as follows:
1. Apply any efficient strategy with � = �′ to the

containers above deck (e.g., the greedy strategy or
Johnson’s rule), treating hatches as stacks and paus-
ing each time all containers above hatch h have been
removed.
2. During the hth pause, unload and load the con-

tainers below the hth hatch using any efficient strat-
egy with �=�′.
This method may not provide the fewest cycles to

complete a row but is efficient, easy to implement,
and yields simple performance formulae by building
on Theorem 1. The theorem is useful because each
piece below a hatch can be viewed as a hatchless
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row, and the containers above a hatch as a stack of
a hatchless row. These analogies allow us to use the
analysis of the hatchless ship to develop bounds for
the hatched case. First it is necessary to define some
notation.
• h—hatch index
• Sh—the set of stacks for hatch h
• Nh—the number of stacks above or below hatch h
• H—the set of hatches
• uhc—the number of containers to unload below

hatch h in stack c ∈ Sh

• uhc—the number of containers to unload above
hatch h in stack c ∈ Sh

• l̄hc—the number of containers to load below
hatch h in stack c ∈ Sh

• lhc—the number of containers to load above
hatch h in stack c ∈ Sh

• uh = ∑
c∈Sh

uhc—containers to unload below
hatch h
• uh = ∑

c∈Sh
uhc—containers to unload above

hatch h
• l̄h =

∑
c∈Sh

l̄hc—containers to load below hatch h
• lh =

∑
c∈Sh

lhc—containers to load above hatch h
• �Y = ∑

h∈H

∑
c∈Sh

uhc—containers for unloading
below deck
• Y = ∑

h∈H

∑
c∈Sh

uhc—containers for unloading
above deck
• �=∑

h∈H

∑
c∈Sh

l̄hc—containers for loading below
deck
• �=∑

h∈H

∑
c∈Sh

lhc—containers for loading above
deck
• wA—the number of cycles above deck
• wB—the number of cycles below deck

Theorem 2. An upper bound on the optimum number
of cycles for the hatched case is∑

h∈H

max
uh� l̄h+max
��Y 

+max
h


uh� lh+max
c∈Sh


uhc� l̄hc�

Proof. From Theorem 1 the number of cycles
above deck, wA, is bounded by

wA ≤max
��Y +max
h


uh� lh� (8)

Likewise, the number of cycles below deck, wB, is
bounded by

wB =
∑
h∈H

wB�h ≤
∑
h∈H

max
uh� l̄h+max
c∈Sh


uhc� l̄hc� (9)

Obviously, then, the total number of cycles with the
algorithm satisfies

wA +wB ≤ ∑
h∈H

max
uh� l̄h+max
��Y 

+max
h


uh� lh+max
c∈Sh


uhc� l̄hc� (10)

which is what we set out to prove. �

Theorem 3. A lower bound on the optimum number of
cycles for the hatched case is
∑
h∈H

max
uh�l̄h+max
��Y +min
h


uh� lh+min
c∈Sh


uhc�l̄hc�

Proof. We know from Theorem 1, but treating each
hatch as a stack, that a lower bound on the number
of cycles above deck is

max
��Y +max
h


uh� lh� (11)

We also know from Theorem 1, but treating each
hatch as a vessel, that a lower bound on the number
of cycles below deck is

∑
h∈H

max
uh� l̄h+max
c∈Sh


uhc� l̄hc� (12)

The sum of these two expressions is the expression
in the theorem statement. Because it must be a lower
bound to the total number of cycles, above and below
deck, the theorem is proven. �

Clearly, for rowswhere
∑

h∈Hmax
uh�l̄h+max
��Y 
�maxh
uh� lh+maxc∈Sh


uhc�l̄hc� both the upper and
lower bounds are close to the solution provided by
the greedy strategy and

∑
h∈H max
uh� l̄h+max
��Y 

provides a reasonable estimate for the number of
cycles required to unload and load a row with deck
hatches. As with the hatchless case, the gap between
the upper and lower bound is quite small, and
decreases with the size of the row.
If one double cycles only below deck, as is cur-

rent practice, the benefits of double cycling will be
reduced by roughly the ratio of containers unloaded
and loaded above deck to containers unloaded and
loaded both above and below deck. Results compar-
ing double cycling without hatches, to double cycling
only below deck, are shown in §7.1.

7. Evaluation
This section addresses the magnitude of double-
cycling benefits. We present tools to convert benefits
from number of cycles to an amount of time, and com-
pare the ensuing results to data collected in a real-
world trial of double cycling. We also consider the
financial impact of double cycling, and present results
that estimate benefits for current and future vessels.

7.1. Evaluation of the Reduction in the Number of
Cycles

We evaluate here the reduction in the number of
cycles achieved by double cycling as predicted by
our formulae, and compare it with the reduction
achieved using Johnson’s rule and the greedy strat-
egy. To understand the benefits on a larger scale
a computer program was used to generate problem
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Table 1 Parameter Settings Used to Generate Vessel Data

Parameter Setting

Number of stacks Varies (as indicated in the figure)
Beta distribution parameters 5 runs with pi = 1, qi = 1, pe = 1, qe = 2

5 runs with pi = 1, qi = 1, pe = 2, qe = 1
10 runs with pi = 1, qi = 1, pe = 2, qe = 2
5 runs with pi = 2, qi = 2, pe = 1, qe = 1
10 runs with pi = 2, qi = 2, pe = 2, qe = 2
5 runs with pi = 2, qi = 2, pe = 2, qe = 1

Maximum number of imports 20
in one stack

Maximum number of exports 20
in one stack

instances and calculate the number of moves for each
algorithm. Comparisons were made for ships without
deck hatches and also for hatched ships when double
cycling only below deck. The number of containers to
unload and load in each stack, uc and lc, were deter-
mined with independent draws of beta random vari-
ables with parameters: �pi� qi� for imports and �pe� qe�
for exports. Because beta random variables have a
range between zero and one, each sampled value was
multiplied by the maximum stack height and then
rounded down to the nearest integer. These values
were, in general, different for imports and exports.
Some stacks could have zero containers. Parameter
settings used to generate the figures are shown in
Table 1. The results are shown in Figures 6 and 7. Each
data point represents the average value of 40 gener-
ated vessels.
As expected, the benefits using the greedy strat-

egy are smaller than the benefits using the optimal
strategy, but the difference is small and both are
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Figure 6 Performance Comparison of Greedy Strategy and Johnson’s
Rule to Single Cycling for Vessels Without Deck Hatches

Note. Each data point shows the percentage savings over single cycling and
is the average result for 40 generated vessels.
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Figure 7 Comparison of the Greedy Strategy, Proximal Strategy, and
Johnson’s Rule to Single Cycling When Double Cycling Only
Below Deck

Note. Each data point shows the percentage savings over single cycling and
is the average result for 40 generated vessels.

very close to the (smaller) benefits predicted with the
upper bound formula. For a row of 20 stacks, there
is a 45% reduction in number of moves over single
cycling for the optimal strategy, a 44% reduction using
the greedy strategy, and a 40% reduction predicted
by the upper bound formula. Notice that the savings
range in the figures has been reduced to allow closer
comparison of the values, and that benefits above 35%
are commonplace.
Figure 7 shows the percentage savings over single

cycling predicted for hatched ships with the upper
bound formula, and those achieved with Johnson’s
rule and the greedy algorithm, when double cycling
only below deck. Here we assume all containers are
removed from atop hatches, all hatch coverings are
removed, all containers below deck are unloaded and
loaded using a double-cycling algorithm, hatch cov-
erings are replaced, and containers above deck are
loaded. Notice again that the scale of the axis has been
adjusted for closer comparison of the strategies. For a
vessel with 20 stacks per row, the benefits of both the
greedy and optimal strategies are close to 22%. A 20%
reduction is predicted by the upper bound formula.
The results of these experiments indicate that double
cycling can reduce the number of cycles significantly,
and that the improvement is insensitive to the algo-
rithm used.

7.2. Time Savings
We now examine how the reduction in number
of cycles translates into decreased operating time.
Whereas the number of cycles required to turn around
the vessel is a relevant metric, the real benefit comes
from reducing operational time consumed by the
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Horizontal distance

Vertical
distance b

dv
P

Figure 8 Horizontal and Vertical Motion of the Crane

unloading and loading processes. We will use the fol-
lowing notation. Please refer to Figure 8.
• W—average time saved for each replacement of

two single cycles by one double cycle
• Sr—number of cycles required to turn-around

row r ∈ 
1� � � � �R using single cycling
• Dr—number of cycles required to turn-around

row r ∈ 
1� � � � �R using double cycling
• dr—number of cycles moving two containers

while operating on row r ∈ 
1� � � � �R
• Vh—hoist speed of the trolley when not moving

a container
• Vl—speed of the crane when moving lengthwise

along the vessel
• Vt—horizontal travel speed of the trolley when

not moving a container
• dV—vertical distance from the apron to the max-

imum height a container can reach
• dL—lateral distance between two rows of the

vessel
• b—horizontal distance from landside vehicle to

the landside edge of the vessel
• P—width of the vessel
• Tr—time required to position landside vehicle

after departure of previous vehicle
Consider the time taken by the same two contain-

ers with single and double cycling. For each double
cycle we save some empty-crane travel relative to the
two corresponding single cycles, but we also experi-
ence a slight landside-repositioning penalty. The time
penalty, Tr , is incurred because after dropping a con-
tainer for unloading onto a landside vehicle, the crane
must wait for a container for loading to be positioned
below the crane. With single cycling, this can be done
simultaneously with other crane operations.
The total distance travelled by the crane is reduced

by one complete empty cycle (without moving a con-
tainer) between the apron and the position above
either the container to load or the container to unload,
whichever is closer. Therefore, the average time saved

by a double cycle, W , satisfies

2
[
max

(
dV

Vh

�
b

Vt

)
+ �1/3�P

Vt

]
− Tr

< W < 2
[
dV

Vh

+ b

Vt

+ �1/2�P
Vt

]
− Tr� (13)

where the quantities in brackets are low and high esti-
mates of the time for a one-way (empty) move. One
reason for the interval estimation is that an unspec-
ified amount of horizontal and vertical motion may
take place simultaneously. For the lower bound we
assume all horizontal and vertical motions are carried
out simultaneously. For the upper bound we assume
they are carried out separately. We also consider a
range for the horizontal distance saved. The one-way
savings is the average distance between the apron
and the closer of the two containers. This is optimisti-
cally considered to be �b + 1

2P� for the upper bound
(as if the two containers were always next to each
other), and pessimistically assumed to be �b+ 1

3P� for
the lower bound (assuming a uniform distribution of
locations). The average time saved by double cycling
on a single row is the product of W and the number
of double cycles: dr = Sr −Dr .
After completing loading and unloading operations

on a row, the crane moves laterally along the vessel
to the next row. If there are R rows on a vessel, the
time consumed with lateral motion is 2�R − 1�dL/Vl

if the vessel is unloaded completely before any con-
tainers are loaded (which is common practice), and
�R − 1�dL/Vl, exactly half, if the crane double cycles
each row before moving on to the next row. We can
now compare the results of this analysis to empiri-
cal data, collected during a double-cycling trial at the
Port of Tacoma, Washington.

7.3. Validation
In June 2003, the Center for the Commercial Deploy-
ment of Transportation Technologies, Transystems,
the Port of Tacoma, and Washington United Ter-
minals worked together on a full-scale demonstra-
tion of the efficient marine terminal concept. Double
cycling of container cranes is a key element of this
concept. On June 28th, one bay of a Hanjin vessel
was loaded and unloaded simultaneously using dou-
ble cycling (TranSystems Corporation 2003). Double
cycling occurred below deck only. During this trial the
adjusted average time for a single cycle was 1 minute
45 seconds, and for a double cycle it was 2 minutes
50 seconds. Thus, double cycling saved 40 seconds
per pair of containers that were double cycled. We
now compare the difference in these empirical cycle
times to the differences obtained using the expres-
sions developed above. Parameter values used for the
time savings analysis (based on the trial at Tacoma)
are given in Table 2 (Garcia 2003–2005).
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Table 2 Parameter Values for Evaluation, Based on
Port of Tacoma Trial

Parameter Value

Vh 300 feet per minute
Vt 500 feet per minute
P 130 feet
dV 75 feet
b 60 feet
Tr 15 seconds

Source. Ward (2003–2005) and TranSystems Corporation
(2003).

The lower bound to the time saved is 25.4 seconds.
The upper bound to the time saved is 45 seconds. The
empirical difference was 40 seconds. We expect the
empirical difference to be closer to the upper bound,
because, in practice, a significant amount of the ver-
tical trolley travel and horizontal trolley travel takes
place separately.
Clearly, the specific results depend on the parame-

ters of each crane, vessel, and container arrangement,
but we have demonstrated in this case that our for-
mula matches empirical data. With the parameters
of Table 2 a 21% reduction in the number of cycles
decreases operating time by approximately 8%, and
a 35% reduction would decrease it by 13%.
We have formulated the problem of minimizing the

number of cycles required to turn around the ves-
sel. From these results, we have developed a method
for converting benefits from number of cycles to an
amount of time, assuming constant cycle times for
single and double cycling. Cycle times turn out to
be nearly constant (insensitive to the position of the
stacks), so our approach approximately minimizes the
operational time.1

7.4. Economic Impact
In this section, we provide simple an estimate of the
economic benefit of double cycling. This estimate is
based on data from a specific West Coast terminal.
Ports vary distinctly in their ownership and fee struc-
tures, so these results may not be relevant for all
terminals. We assume that freed resources can be use-
fully employed. In practical terms, this means that the
released capacity can be used to move additional con-
tainers. This assumption reflects current market con-
ditions, where demand is expected to exceed capacity
during the peak season.

1 If cycle times depended heavily on the position of the stacks, bene-
fits could arise from strategies that would handle together proximal
stacks. The optimization problem becomes more complex and does
not lead to simple formulae. These strategies have been examined
in Goodchild (2005), but their main benefit appears to be imple-
mentation simplicity.

We consider the economic impact of a 10% reduc-
tion in operating time, because this is typical for
a medium-size vessel when double cycling below
deck. We assume a vessel, capable of carrying 6,000
TEUs, unloads and loads 1,500 containers in 50 hours
using single cycling and in 45 hours using double
cycling. We compare the main benefits in dollars
per container moved. Detailed assumptions and data
sources can be found in Goodchild (2005). The results
are shown in Table 3.
The value of the double-cycling benefits are signif-

icant, but the beneficiaries include parties who are
not responsible for its implementation. If a larger
portion of the benefits were experienced by those
responsible for its implementation, we might see more
widespread use of the technique.
Although double cycling will not eliminate current

port congestion, it can be implemented quickly and,
in conjunction with other measures, can ease con-
gestion before more long term infrastructure projects
come on line. Any amount of double cycling will
reduce the number of cycles required to turn around
the vessel. The next step in this research is to under-
stand how other port resources, such as landside
equipment, gate time, and rail capacity are affected
by double cycling. For example, double cycling while
unloading and loading the vessel creates an opportu-
nity to double cycle landside equipment. Chassis used
to deliver containers to the apron can then carry an
unloaded container to local storage. Typically, these
chassis return to the local storage empty. In an effort
to understand why the implementation of double
cycling has been so slow, we should also look at the
economic costs and benefits of double cycling with a
more systematic approach, to understand how differ-
ent parties may be encouraged to work together to
implement double cycling.

Appendix
The double-cycling problem can be formulated as the two-
machine flow shop problem below. We use the following
notation:
• uc—number of containers to unload in stack c ∈ S
• lc—number of containers to load in stack c ∈ S
• F Uc—completion time of unloading c ∈ S
• FLc—completion time of loading c ∈ S
• w—maximum completion time
• Xkj—binary variable to for ordering of unloading jobs

(1 if j ∈ S is unloaded after k ∈ S and 0 otherwise)
• Ykj—binary variable to for ordering of loading jobs (1 if

j ∈ S is loaded after k ∈ S and 0 otherwise)
• M—a large number
The scheduling problem (SP) is to minimize the maxi-

mum completion time of all jobs subject to constraints. The
result is to uniquely identify the permutations � and �′,
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Table 3 Comparison of the Approximate Economic Benefits of Double Cycling

Savings Extra cost
Resource ($/container moved) ($/container moved) Beneficiary Labor involved (effect)

Vessel $40.00 $13�00 Vessel operator Ship crew (spend less time in port)
Crane $22.00 $0�00 Terminal operator Crane operator and Stevedores (more stress due to less time

with each container but can be compensated with better pay)
Berth $22.00 $0�00 Port authority Landside labor force (work changes little in character but becomes

more productive and could be compensated with better pay)
Total $85.60 $13�00

Note. Based on data from a specific West Coast terminal.

and a feasible set of job start and end times. It is assumed
that the process starts at time zero. The formulation is

(SP) minimize w (14a)

subject to w ≥ FLc ∀ c ∈ S� (14b)

FLc − F Uc ≥ lc ∀ c ∈ S� (14c)

F Uk − F Uj +MXkj ≥ uk ∀ j� k ∈ S� (14d)

F Uj − F Uk +M�1−Xkj�≥ uj

∀ j� k ∈ S� (14e)

FLk − FLj +MYkj ≥ lk ∀ j� k ∈ S� (14f)

FLj − FLk +M�1−Ykj �≥ lj

∀ j� k ∈ S� (14g)

F Uc ≥ uc ∀ c ∈ S� (14h)

Xkj�Ykj = 1�0 ∀ j� k ∈ S� (14i)

These constraints completely define the double-cycling
problem. Constraints (14b) ensure that the makespan is
greater than or equal to the completion of loading of
all stacks. Constraints (14c) ensure that stacks are only
loaded after all necessary stacks have been unloaded. Con-
straints (14d), (14e), and (14i) ensure that every stack is
unloaded after the previous one in �′ has been unloaded.
This is achieved by specifying for every pair of stacks �j� k�
that either stack k is unloaded before stack j (if Xkj = 1) or
the reverse (if Xkj = 0), and that the time difference between
the two events is large enough to unload the second of the
two stacks. Constraints (14f), (14g), and (14i) are equiva-
lent to (14d), (14e), and (14i) but for loading jobs. Con-
straints (14h) ensure that each unloading completion time
allows for enough time to at least unload that stack.
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