Statistical Analysis Of Commercial Vehicle Border Crossing Times and Volumes: Case Study Of The Pacific Highway Port-of-Entry Free And Secure Trade Lane

Thesis Presentation By Li Ying Leung

Wednesday, June 10, 2009 8:00 am More 119

Pacific Highway Port-of-Entry

Findings (1 of 2)

- 1. Relationships between crossing times and arrival volume
 - a) Strong correlation at aggregate level
 - b) Not strong at a disaggregate level
- Non-primary crossing times contribute to very long crossing times

Findings (2 of 2)

- 4
- 3. FAST lane utilized by vehicles who transport:
 - a) Bulk
 - b) Empty
- 4. Complex sampling can
 - a) reduce resources
 - b) same results with higher precision

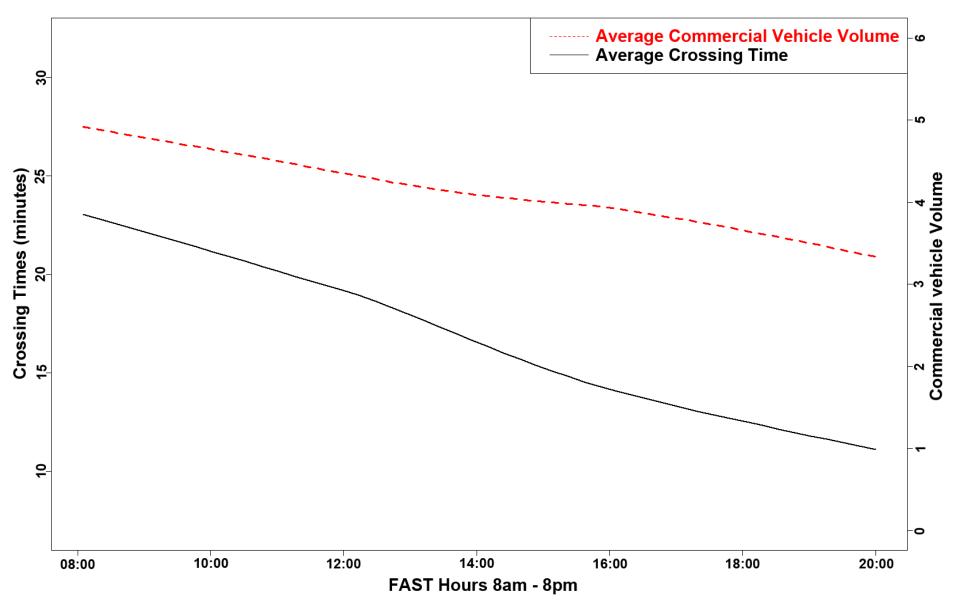
Very Long Crossing Times Methods

- 1) Temporal Trends of arrival volumes and crossing times
- Correlation between arrival volumes and crossing times
- 3) Primary and Non-Primary Concepts
- 4) Lane Utilization by Commodity

Complex Sample Survey Techniques

Crossing Time Data Set

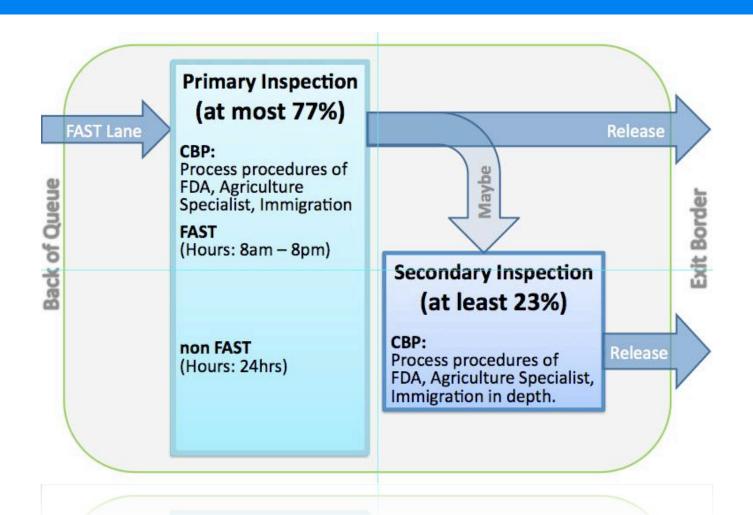
- Jet Star GPS Data Set
- Southbound
- July 10, 2005 through May 19, 2009
- FAST Hours: 8AM-8PM Mondays through Fridays


#Obs	Mean	Standard Deviation	Median	Min	Max
13,680	00:17:03	00:19:18	00:11:44	00:00:14	04:42:51

Arrival Volume Data Set

- BC MoT Data Set
 5 minute average intervals
- E paired loop date
- 5 paired loop detectors
- November 13, 2006
 through May 5, 2008
- FAST Hours
- 388,500 observations

Trends between Arrival Volume and Crossing Times in 2007


Temporal Correlations (R)

Seasons	R	Average crossing time
Spring	0.43	19 minutes, 25 seconds
Summer	0.46	17 minutes, 38 seconds
Fall	0.22	16 minutes, 30 seconds
Winter	0.32	21 minutes, 38 seconds

Weekdays	R	Average crossing time
Monday	0.37	20 minutes, 35 seconds
Tuesday	0.30	18 minutes, 25 seconds
Wednesday	0.40	19 minutes, 38 seconds
Thursday	0.44	15 minutes, 9 seconds
Friday	0.46	22 minutes, 24 seconds

Primary and Non-Primary

10

Lane Choice Analysis

- 11
- WCOG Manifest data
 - High resolution for microscopic time period data
- June 5-8, 2006
- 1,200 observations

Hypothesis Testing

12

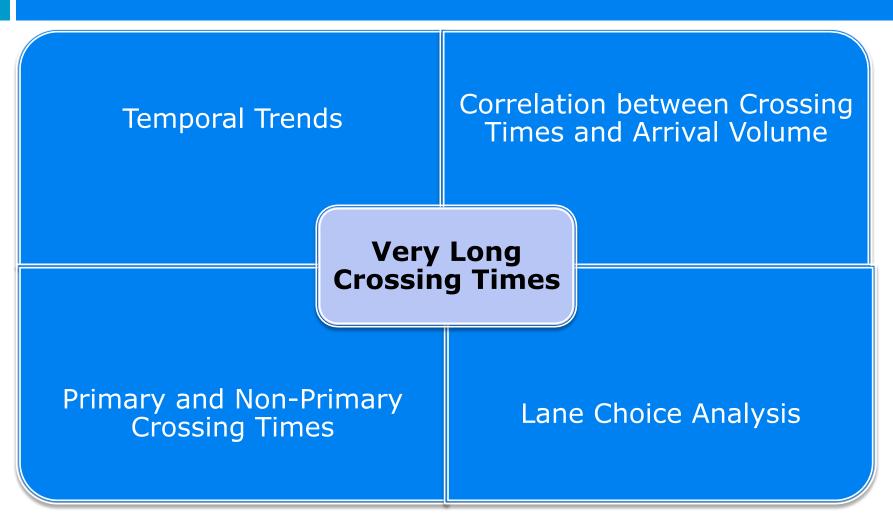
Test the differences between average lane choice by commodity

Null Hypothesis:

"Is there a difference between a commodity's lane choice and the lane choice for all commodities"

Alternative Hypothesis:

There is no difference
 Significance level of 5%



Two-Sample T-Test Results

Commodity Type	Significance	Lane Choice
Manufacturing	✓	Middle
Unknown	X	
Food	\checkmark	Middle
Wood	X	
Bulk	✓	FAST
Farm	X	
Printed Matters	X	
Empty Truck Container/Pallet	✓	FAST

Methodologies

14

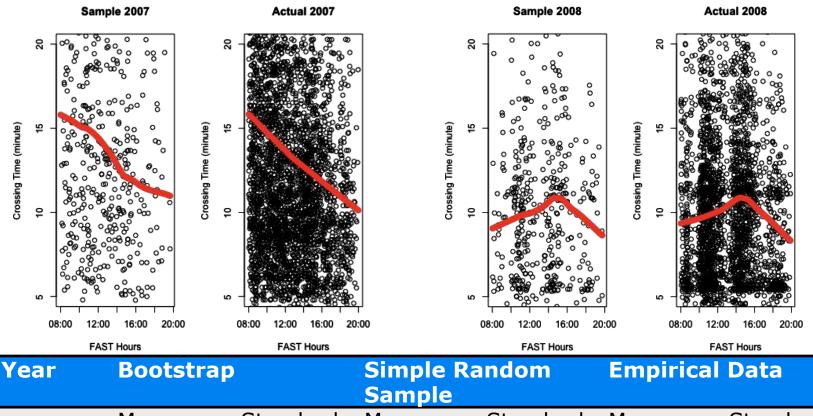
Complex Sampling Analysis

15

"A simple random sample is almost always better than a non-random sample. A more complex random sample is often even better than a simple random sample: lower cost for the same precision" (Lumley, 2009)

Parameter Estimation of 2007

Mean Estimates


Sampling Type	Mean	Standard Error
Empirical	00:18:58	00:20:19
Simple Random Sampling	00:19:00	00:21:47
Simulated	00:19:02	00:01:26

Standard Deviation Estimates

Empirical Mean of the Standard Deviation		Standard Error of the Standard Deviation
00:20:19	00:19:51	00:03:38

Complex Sampling

17

	Mean	Standard	Mean	Standard	Mean	Standard
		error		error		error
2007	00:17:37	00:00:48	00:19:16	00:20:42	00:18:58	00:20:19
2008	00:17:36	00:02:02	00:15:31	00:22:37	00:14:47	00:19:32

Recommendations

Sample survey

- Infer the same estimates with less costs
- High resolution for macroscopic time period data
- Applied to future studies
 - Sumas
 - Lynden
 - Blaine

19

Thank you

Contact Information: Li Leung lileung@u.washington.edu