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Abstract

In this research we consider an approach for improving the efficiency and tightness of column genera-
tion (CG) methods for solving vehicle routing problems. Our approach can be immediately extended to
CG methods for problems in other areas in logistics, as well as problems with similar structure in other
application areas. This work builds upon recent work on Local Area (LA) routes. LA routes rely on
pre-computing (prior to any call to pricing during CG) the lowest cost elementary sub-route (called an
LA arc) for each tuple consisting of the following: (1) a customer to begin the LA arc, (2) a customer to
end the LA arc, which is far from the first customer, (3) a small set of intermediate customers nearby the
first customer. LA routes are constructed by concatenating LA arcs where the final customer in a given
LA arc is the first customer in the subsequent LA arc. A Decremental State Space Relaxation (DSSR)
method is used to construct the lowest reduced cost elementary route during the pricing step of CG. We
demonstrate that LA route based solvers can be used to efficiently tighten the standard set cover vehicle
routing relaxation using a variant of subset row inequalities (SRI). SRI are a class of valid inequalities that
can significantly tighten the standard set cover linear programming (LP) relaxation for vehicle routing
problems such as the Capacitated Vehicle Routing Problem (CVRP). However, SRI are difficult to use in
practice as they alter the structure of the pricing problem in a manner that makes pricing difficult. SRI
in their simplest form state that the number of routes servicing two or three members of a given set of
three customers can not exceed one. We introduce LA-SRI, which in their simplest form state that the
number of LA arcs (in routes in the solution) including two or more members of a set of three customers
(excluding the final customer of the arc) cannot exceed one. Higher order generalizations of SRI also
exist and can be applied to LA-SRI. We exploit the structure of LA arcs inside a Graph Generation
based formulation to accelerate convergence of CG. We apply our LA-SRI to CVRP and demonstrate
that we tighten the LP relaxation, often making it equal to the optimal integer solution, and solve the
LP efficiently without altering the structure of the pricing problem.

1 Introduction

In this research we introduce a new class of valid inequalities called Local Area-subset row inequalities (LA-
SRI), which serve as a component in column generation (CG) solutions (Barnhart et al. 1996, Gilmore and
Gomory 1961) to vehicle routing problems (VRP) (Desrochers et al. 1992, Feillet 2010). While our approach
can be applied to more general vehicle routing problems, we describe and conduct experiments using the
Capacitated Vehicle Routing Problem (CVRP), which we define as follows.
CVRP is associated with the following terms: (1) a depot located in space, (2) a set of customers with
integer demands located in space, (3) and a set of homogeneous vehicles with integer capacity. Vehicles are
assigned to routes, where each route satisfies the following:
(1) each route starts and ends at the depot, (2) the total demand of the customers on a route does not exceed
the capacity of a vehicle, (3) the cost of the route is the total distance traveled. The CVRP problem selects
a set of routes with the goal of minimizing the total distance traveled while ensuring that each customer is
serviced at least once (though an optimal solution services each customer exactly once).
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CVRP and other vehicle routing problems can be solved using with compact linear programming (LP)
relaxations or expanded LP relaxations (Desrochers et al. 1992) (where the expanded LP relaxation is often
referred to as the set cover formulation). Compact LP relaxations have a variable for each tuple consisting of a
vehicle and pair of destinations, each either at a depot or customer, denoting the first and second destination.
The associated variable is used to indicate if the given vehicle travels from the first destination to the second
destination. Expanded LP relaxations have one variable for each possible route, and each such variable is
used to indicate that the given route is selected. While both the compact and expanded LP relaxations
have the same optimal integer linear programming (ILP) solution objective, these formulations can have
different optimal LP solution objectives. The expanded LP relaxation is often tighter and is never looser
than the compact LP relaxation and hence is often preferred in practice (Costa et al. 2019). The number
of possible routes can grow rapidly in the number of customers and often can not be easily enumerated
much less considered in optimization. Hence the expanded LP relaxation is solved using CG, which imitates
the revised simplex, where the pricing operation is a resource constrained shortest path (RCSP) problem
(Baldacci et al. 2011, Desrochers et al. 1992). The RCSP is NP-hard but is efficiently solvable at the scale
of many practical problems (Desrosiers and Lübbecke 2005).

Dual stabilization approaches are employed to accelerate the convergence of CG in terms of time or
iterations and does so by altering the sequence of dual solutions generated but does not alter the structure
of the pricing problem (Marsten et al. 1975, Du Merle et al. 1999, Haghani et al. 2021). The stabalization
mechanism which we employ in this paper is Graph Generation (GG) (Yarkony et al. 2021). To apply GG,
we must be able to map any given column to a small directed acyclic graph for which any path from source
to sink describes a feasible column. This structure is easily satisfied for vehicle routing and crew scheduling
problems; and other such problems where pricing is a resource constrained shortest path problem (RCSP).
Such graphs are then added to the restricted master problem (RMP) when the corresponding column is
generated during pricing. The use of GG does not weaken the expanded LP relaxation. At any given
iteration of CG, GG permits the RMP to express a much wider set of columns than those generated during
pricing. As a result, incorporating GG to faster convergence of CG since fewer iterations of CG are needed.

When graphs are large the GG RMP can become a computational bottleneck which is easily circumvented
using Principled Graph Management (PGM) (Yarkony and Regan 2022). PGM exploits the following prop-
erties of the GG RMP: 1: the addition of a small number of edges to a GG graph has the effect of adding a
large number of columns to the GG RMP without significantly increasing GG RMP solution time; 2: most
edges are not active in the final solution to the GG RMP at any iteration of GG; 3: computing the lowest
reduced cost column associated with any graph is a simple shortest path problem (not a RCSP).

PGM solves the GG RMP in a manner akin to CG by alternating between the following two steps: a:
solving the RMP over a subset of the edges in the graphs; b.: adding edges to the subset under consideration
associated with the lowest reduced cost column. PGM terminates when the optimal solution to the RMP is
solved, which is achieved when no negative reduced cost columns exist in the graphs.

In standard applications of GG to vehicle routing such as Capacitated Vehicle Routing Problem (CVRP),
each route is associated with a graph representing the ordering of customers in the route. A route is consistent
with that ordering if by removing customers from the ordering in the graph we obtain the route. The
construction of orderings is motivated by the observation that customers that are in similar physical locations
should be in similar positions on the ordered list. Thus given a route (Yarkony et al. 2021) iterates through
the customers not in the original route and inserts the given customer behind their nearest customer in the
original route.

CG only enumerates a small subset of the possible routes to produce an LP solution. Solving the ILP
over these routes produces a value that is often very close to the ILP solution over all possible routes
(Barnhart et al. 1996). Hence to generate provably optimal integer solutions branch & price (Barnhart et al.
1996) methods are employed which branch on terms in the compact relaxation and solve the expanded LP
relaxation at any given node in the branch-bound tree using CG. Branch & price methods do not disrupt the
structure of the pricing problem, unlike cutting plane methods, which can be employed jointly with branch
& price (and the product is called branch & cut & price (Desrosiers and Lübbecke 2011)) to tighten the
relaxation. Cutting plane methods add valid inequalities to the LP relaxation which are satisfied by every
integer solution but not every fractional solution. Cutting plane methods add valid inequalities as needed
when the LP solution violates such an inequality.

Subset row inequalities (SRI) (Jepsen et al. 2008) are one class of SRI, which in practice significantly
tightens the expanded LP relaxation for vehicle routing problems. We describe a simple SRI below: the
number of routes servicing two or three members of a given set of three customers cannot exceed one. We
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describe a more elaborate SRI below: the number of routes servicing two or three members of a given set of
five customers plus two times the number of routes servicing four or five of those customers can not exceed
two. SRI of low order (defined over small number of customers such as 3,4,5) that are violated can be easily
identified and hence can be satisfied in a cutting plane manner. SRI are challenging to use in standard
CG formulations since they alter the structure of the pricing problem. This is because each SRI creates an
additional resource that must be kept track of by the RCSP solver.

In order to gain the advantages of SRI without altering the structure of the pricing problem, which is a
key goal, we apply LA routes (Mandal et al. 2022). LA routes are a superset of feasible elementary routes
(where elementary means that a customer is included no more than once), and a subset of feasible ng-routes
(Baldacci et al. 2011). n LA route is described as a sequence of LA arcs. Each LA arc starts at a customer,
then contains sequence of customers nearby the first customer in the arc, and ends with a customer far away
from the first customer in the arc. An LA arc contains no customer more than once. The final customer on
an LA arc is the same as the first customer on the subsequent LA arc in a route. LA routes can be efficiently
priced over, and can be used with a Decremental State Space Relaxation (Righini and Salani 2009) to produce
the lowest reduced cost elementary routes. Hence any elementary route can be written as a sequence of LA
arcs.

We weaken the LP relaxation over elementary routes enforcing SRI marginally by enforcing SRI con-
straints over LA arcs and not routes. We refer to the weakened SRI as Local Area-SRI (LA-SRI). We now
express LA-SRI over LA arcs for a simple example used previously as follows. We enforce that the number
of LA arcs in routes in our solution servicing two or three members of a given set of three customers can not
exceed one. All customers in an LA arc except the last customer in that LA arc are serviced by that arc.
LA-SRI are designed to effectively enforce SRI defined over customers localized in space. The dual variables
for LA-SRI in the RMP are associated with the cost terms over LA arcs in pricing, leaving the structure of
the pricing problem unmodified when LA-SRI are added.

In this paper, we apply LA-SRI in a manner so as to exploit the structure of LA routes inside a GG
solver (Yarkony et al. 2021). We relax the consistency criteria (for routes in GG) to enforce that routes
associated with a given graph only use LA arcs that satisfy the following: All intermediate customers must
come before/after the last/first customer in the LA arc respectively in the associated ordering of the graph;
and the first customer in the LA arc must come before the last customer in the LA arc in the associated
ordering of the graph. This change does not loosen the expanded LP relaxation but decreases the number of
iterations of GG required to solve the expanded LP relaxation.

We organize this document as follows. In Section 2 we review the existing literature on valid inequalities
used with CG, and branch & price. In Section 3 we provide a mathematical review of CG for CVRP, LA
routes, and SRI. In Section 4 we describe LA-SRI, and show how the structure of the pricing problem is
preserved when adding LA-SRI. In Section 5 we describe an efficient GG/PGM based solver for the expanded
LP relaxation that is able to consider LA-SRI. In Section 6 we provide an experimental validation of our
approach. In Section 7 we conclude and discuss extensions.

2 Literature Review

In this section we briefly review the most related literature on valid inequalities, and branch & price (Barnhart
et al. 1996, 2000). Valid inequalities are used to tighten the expanded LP relaxation (Costa et al. 2019) and
are added to the expanded LP relaxation in a cutting plane manner. In a cutting plane method, valid
inequalities iteratively remove optimal fractional solutions from the LP solution space. Valid inequalities
do not remove any integer solutions from the feasible space. Large classes of valid inequalities exist. One
key class that is of use in vehicle routing and combinatorial optimization problems in operations research
(and computer vision) are subset row inequalities (SRI) (Jepsen et al. 2008, Yarkony et al. 2020, Wang et al.
2017). The most trivial variant of SRI for CVRP enforces that the number of vehicles including two or
more customers from a given set of three does not exceed one. More elaborate SRI exist as we will see later
in the document. SRI are rank one Gomory-Chitival cuts. The use of SRI alters the structure of the CG
pricing problem, requiring the resource constrained shortest path solver for pricing to keep track of additional
resources.

Another key class of valid inequalities are capacity inequalities (Archetti et al. 2011). Capacity inequalities
ensure that the number of selected arcs (where an arc indicates travel from one customer/depot immediately
to another customer/depot) composing the route entering a subset of customers is no less than the minimum
number of vehicles required to service all customers in that subset. Capacity inequalities are challenging
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(and are in fact NP-hard) to identify (Ralphs et al. 2003) (identification is often referred to as separation).
However, capacity inequalities have the key advantage over SRI that they do not alter the structure of the
pricing problem. This is because the dual variables of capacity inequalities are associated with the traversals
of arcs present in the pricing problem. The reduced cost of a route thus remains the sum of the costs of the
edges in the pricing graph leaving the structure of the pricing problem unmodified.

An alternative or complement to valid inequalities is branch & price (Barnhart et al. 1996) (which in its
complementary form is called branch & cut & price (Desrosiers and Lübbecke 2011)). In branch & price,
branching is done on variables present in the compact LP relaxation. For example, we would branch whether
a given customer u should be followed by a customer v in a route (Ryan and Foster 1981). This branching
process does not alter the structure of the pricing problem and only adds weights with infinite value on the
prohibited edges over which pricing is done.

Valid inequalities (and branching on variables of the compact form) are challenging to use with dual
optimal inequalities (DOI) (Ben Amor et al. 2006) as DOI that are correct for the expanded LP relaxation
need not be correct when valid inequalities or branching are applied (Haghani et al. 2021). However violated
DOI can be removed on demand in a cutting plane manner.

3 Mathematical Review

In this section we review the core mathematical techniques required to understand the contributions of this
paper.

3.1 Column Generation for CVRP

We now consider the Capacitated Vehicle Routing Problem (CVRP), which we define briefly as follows. We
are given a set of customers located in a metric space with integer demands, a number of homogeneous vehicles
with common capacity, and a depot located in the same metric space. We seek to cover the customers with a
set of ordered lists (of customers) called routes. Each route is serviced by a unique vehicle so as to minimize
the total distance traveled, while ensuring that no vehicle services more demand than it has capacity. Vehicles
start and end at the depot.

We now describe CVRP formally using the following notation. We use N to denote the set of customers
which we index by u. We use N+ to denote N augmented with the starting/ending depot denoted −1,−2
which are often at the same location. We use K to denote the number of vehicles available for use each
with a capacity d0.We use du to denote the demand of u ∈ N+ where d−1 = d−2 = 0. We use Ω to denote
the set of feasible routes which we index by l. We use aul = 1 if route l services customer u. We use use
auvdl = 1 if route u leaves u ∈ N+ − (−2) with d units of capacity remaining then travels immediately
to v ∈ N+ − (−1 ∪ u). We use F to denote the set of feasible values (uvd) for auvdl which is defined as
u ∈ N+ − (−2), v ∈ (N+ − (−1, u)), (d0 − du)[v 6= −2] ≥ d ≥ dv. We use cuv to denote the distance between
any pair u ∈ N+, v ∈ N+. Using cuv, we write the cost of a route l which we denote as cl as the total
distance traveled below.

cl =
∑
uvd∈F

cuvauvdl ∀l ∈ Ω (1)

We now describe the necessary and sufficient conditions that a set of values {aul, auvdl} satisfy for l to lie
in Ω with annotation below. ∑

−1,u,d∈F

a−1,u,d,l = 1 ∀l ∈ Ω (2a)

aul =
∑
v∈N+

d0−du≥d≥dv

auvdl ∀l ∈ Ω, u ∈ N (2b)

∑
v∈N+

(v,u,d)∈F

avudl =
∑
v∈N+

(u,v,d−du)∈F

auv,d−du,l ∀l ∈ Ω, u ∈ N, d ≥ du (2c)

auvdl ∈ {0, 1} ∀uvd ∈ F (2d)

aul ∈ {0, 1} ∀u ∈ N (2e)
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In (2a) we enforce that the route starts at the starting depot. In (2b) we enforce that the the auvdl and aul
terms are consistent . In (2c) we enforce that a vehicle must leave a customer u with the amount of resource
it entered with minus du. In (2d),(2e) we enforce that aul, auvdl are binary valued so that a set of actions is
specified for the route, and that there is no fractional servicing of customers.

We now consider optimization for CVRP below as a set cover problem. Given our definition of Ω the
standard CVRP LP relaxation is written using decision variables θl where θl = 1 if route l is selected in our
solution and otherwise set θl = 0. We write the minimum weight set cover LP relaxation over Ω as Ψ(Ω)
below, with dual variables written in [] as π; with exposition after the equations.

Ψ(Ω) = min
θ≥0

∑
l∈Ω

clθl (3a)∑
l∈Ω

aulθl ≥ 1 ∀u ∈ N [πu] (3b)∑
l∈Ω

θl ≤ K [−π0] (3c)

In (3a) we minimize the total cost of the routes used. In (3b) we ensure that each customer is covered
(serviced) at least once (though an optimal solution will service each customer exactly once). In (3c) we
ensure that no more than K vehicles are used in the solution.

Since the cardinality of the set of routes Ω can grow exponentially in the number of customers we cannot
trivially solve (3). Instead CG (Barnhart et al. 1996, Desrochers et al. 1992) is employed to solve (3). CG
constructs a sufficient subset of Ω denoted ΩR s.t. solving (3) over ΩR provides an optimal solution to (3)
over Ω. To construct ΩR, we iterate between (1) solving (3) over ΩR, which is referred to as the restricted
master problem (RMP) and written as Ψ(ΩR) and (2) identifying at least one l ∈ Ω with negative reduced
cost, which are then added to ΩR. Typically the lowest reduced cost column (member of Ω) is generated.
We write the selection of this column as optimization below using c̄l to denote the reduced cost of l ∈ Ω.

min
l∈Ω

c̄l (4a)

c̄l = cl + π0 −
∑
u∈N

aulπu ∀l ∈ Ω (4b)

The operation in (4) is referred to as pricing. CG terminates when pricing proves no column with negative
reduced cost exists in Ω. This certifies that CG has produced the optimal solution to (3). We typically
initialize ΩR with columns corresponding to artificial variables that have prohibitively high cost to use in an
optimal solution but can be used to create a feasible solution. This can be done by creating |N | variables each
of which covers a customer u with prohibitively high cost but without using a vehicle. Pricing is attacked
as an elementary resource constrained shortest path problem (RCSP) and may be treated with a variety
of algorithms including but not limited to dynamic programming based labeling algorithms(Desrosiers and
Lübbecke 2005).

3.2 Pricing using Local Area Routes Solver

In this section we review the Local Area (LA) route relaxation based solver of (Mandal et al. 2022) for CVRP
pricing problems. This section is abbreviated from (Mandal et al. 2022) and adapted to the use of notation
later in this paper. To learn more about LA routes, refer to (Mandal et al. 2022), notably for the use of
dominance criteria during pricing (Desaulniers et al. 2005). LA route solvers employ a Decremental State
Space Relaxation (DSSR) (Righini and Salani 2009) over LA routes, which are a superset of elementary
routes (and LA routes are a subset of the popular ng-routes (Baldacci et al. 2011)) and are easily priced over.
DSSR gradually decreases the subspace of LA routes considered until the optimal LA route is elementary.

We organize this section as follows. In Section (3.2.1) we define the notation and basic information
associated with LA routes. In Section (3.2.2) we provide the definition for LA routes. In Section (3.2.3) we
describe the use of LA routes inside of DSSR to produce the the lowest reduced cost route elementary route.
In Section (3.2.4) we describe the computation of the lowest reduced cost LA route using the Bellman-Ford
Algorithm with efficient computation of edge weights for the associated graph specified in Section 3.2.5. In
Section (3.2.6) we describe replace Bellman-Ford with Dijkstra’s algorithm which has better computational
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performance; this is an intermediate step leading to Section (3.2.7) where we replace Dijkstra’s algorithm
with A* (Dechter and Pearl 1985) for further computational efficiency. In Section (3.2.8) we describe the
reduction in the space of LA routes for DSSR so as to improve the efficiency of pricing.

3.2.1 Local Area Structure of Reduced Cost

We now describe costs and terms associated with computing the lowest reduced cost route as done in (Mandal
et al. 2022). Our description employs the following notation. We use Nu ⊆ N − u to denote the set of
customers nearby u for a given u ∈ N . We refer to Nu as the LA neighbors of customer u. The selection of
the cardinality of Nu involves computational trade offs seen later in the document. In (Mandal et al. 2022)
Nu is set to be the 10 nearest neighbors of u in for each u ∈ N . We use Ωy where y = (u, v, d) for some
(u ∈ N , v ∈ (N+ − (Nu ∪ u ∪−1)), d0 − dv ≥ d ≥ du), which we index by p, to denote the set of elementary
paths p meeting the following properties.

• Path p starts at u, ends at v and all intermediate customers denoted Np lie in the LA neighborhood of
u; meaning that Np ⊆ Nu.

• The total demand serviced in path p prior reaching v is d meaning
∑
w∈Np∪u dw = d.

• We use cp to denote the total travel distance (cost) of path p. The ordering of the intermediate
customers Np in path p is denoted ζp and is set so as to minimize cp.

We use Y , which we index by y, to denote the set of (u ∈ N , v ∈ (N+ − (Nu ∪ u ∪ −1)), d ≥ du) for which
Ωy is non-empty.

The LA routes approach seeks to find a resource constrained shortest path on a directed acyclic multi-
graph with the following properties. It is constructed so that any elementary path from source to sink has
total cost on traversed edges equal to c̄l and that the set of elementary paths from source to sink is exactly
Ω. Thus finding the lowest reduced cost elementary path solves (4). We define this multi-graph as follows
using I, E to denote the set of nodes and edges respectively.

• We index I using i or j. There is one node corresponding to the source (−1, d0) and the sink (−2, 0).
There is one node for each u, d where u ∈ N and d0 ≥ d ≥ du.

• We connect (−1, d0) to node (u, d) for each d ≥ du. This edge is associated with weight c̄ij = cuv + π0.
Traversing this edge indicates that the vehicle leaves the depot on a route servicing exactly d units of
demand on the route, where its first customer is u. We use Nij to denote the set of customers associated
with a given edge. This edge is associated with servicing no customers meaning Nij = {}.

• For each y ∈ Y, p ∈ Ωy ( where y = (u, v, d)) and nodes in i ∈ I, j ∈ I i = (u, d1), j = (v, d1 − d) we
connect i to j with an edge with weight c̄ij = cp −

∑
w∈Np∪u πu. Traversing this edge indicates that

upon arriving at u with d1 units of demand remaining that the vehicle travels on path p servicing the
customers in Np then proceeds immediately to v. Here Nij = u ∪Np.

Given a path from source to sink containing the arcs Ê this path is elementary (services no customer
more than once) if the edges in Ê have disjoint Nij sets. We use aijl = 1 if route l uses edge ij. Thus we
write the reduced cost of a route l as follows in terms of c̄ij .

c̄l =
∑
ij∈E

aijlc̄ij (5)

We use pij to denote the path corresponding to edge ij where pij = 0 if i = (−1, d0) The solver for LA route
employs a Decremental State Space Relaxation (DSSR) (Righini and Salani 2009) exploiting the fact that
for cp terms can be computed in advance as long as |Nu| does not become exceedingly large.

3.2.2 LA routes: Component for Pricing

In this section we define LA routes which we use to solve pricing. We express LA routes using the following
terms Mu ⊆ N − u which we refer to as ng-neighbors as introduced by (Baldacci et al. 2011) and used by
many different researchers. The sets Mu∀u ∈ N grow over the course of DSSR (Righini and Salani 2009).
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We use ΩLA to denote the set of paths from source to sink in the graph in Section 3.2.1 some of which
are not elementary and hence Ω ⊆ ΩLA. To assist in our description we use ulk to refer to the k′th customer
visited in the route l. We use Ql to refer to the set of special indexes. The special indexes correspond to the
nodes visited on the route. Thus qlj = k if the first j LA arcs on the route l contain a total of k customers;

meaning
∑
ij∈Elj |Nij |; where Elj is the first j edges starting from the source on route l. The feasibility of

an LA route given M is written as follows.

(u = ulk1 = ulk2)→ ∃k3 s.t. k1 < k3 < k2, k3 ∈ Ql, v = ulk3 , u /∈Mv ∀{u ∈ N, k2 > k1} (6)

The premise of (6) (left hand side of the → in (6) ) is true if the same customer is at indexes k1 and k2 and
that customer is u. The inference (right hand side of the → in (6)) is that there must exist a customer at
special index k3 that lies between k1 and k2 and does not consider u to be a ng-neighbor.

3.2.3 Decremental State Space Relaxation

DSSR generates the lowest reduced cost elementary route by iterating between solving for the lowest reduced
cost LA route given M followed by augmenting M .

We describe the procedure to use DSSR alongside LA routes as follows. We define the Nu for all u ∈ N to
be the composed of the nearest customers to customer u. We initialize Mu = {} ∀u ∈ N , but these Mu sets
increase in size over iterations of DSSR. We define M−1,M−2 to be initialized empty and remain empty. We
then iterate between the following two steps until the lowest reduced cost LA route generated is elementary.

1. Solve for the lowest reduced cost LA route, also denoted as l, as a shortest path problem (not a resource
constrained shortest path problem). This procedure is described in Section 3.2.4.

2. Find a cycle of customers in the selected route l (if it exists). Consider that the cycle identified
starts ends with customer u at indexes k1, k2 where k2 > k1. Now, for each intermediate customer
k3 ∈ Ql for which k2 ≥ k3 > k1 add u to Mulk3

. In Section 3.2.4 we shall see that smaller Mu sets are

computationally desirable for pricing over LA routes (which is step 1 of DSSR) (Mandal et al. 2022).
Thus, intelligent cycle selection is done so as to keep Mu sets small which we discuss in Section 3.2.8.

3.2.4 Pricing over LA routes

In this section we discuss generating the lowest reduced cost LA route given ng-neighbors sets M , as required
in step (1) in DSSR as a simple shortest path computation which we solve can solve with Bellman-Ford. To
assist in this description we introduce the following terms. For any given tuple z = (u, v,M1 ⊆ Mu,M2 ⊆
Mv, d) we use Ωz to denote the subset of Ωy where y = (u, v, d) s.t. p ∈ Ωz has Np satisfy all of the following
properties: |Np ∩M1| = 0, M2 = Mv ∩ (u ∪M1 ∪Np). We use Z, which we index by z, to denote the set of
non-empty Ωz.

Given any dual solution π, we define c̄z as the cost of the lowest reduced cost path in Ωz as written below.

c̄z = min
p∈Ωz

c̄p (7)

We define minimizing path in (7) as pz. Using terms pz we describe the following graph with vertex and
edge sets denoted IM , EM where the lowest reduced cost LA route in ΩLA corresponds to the lowest cost
path from the source to the sink.

• We index IM with i, j. There is one node in IM corresponding to the source denoted (−1, {}, d0), and
one node for the sink denoted (−2, {}, 0). For each node (u, d) ∈ I (all nodes are defined in this manner
in I excluding source and sink), create one node (u,M1, d) in IM for each tuple u,M1, d satisfying the
following: M1 ⊆Mu, d0 −

∑
w∈M1

dw ≥ d ≥ du.

• We connect (−1, {}, d0) to node (u, {}, d) for each u, {}, d} in IM . This edge is associated with weight
c̄ij = cuv + π0. Traversing this edge indicates that the vehicle leaves the depot on a route servicing
exactly d units of demand, where its first customer serviced is u.

• For each z ∈ Z ( where z = (u, v,M1,M2, d)) and nodes in i ∈ IM , j ∈ IM where i = (u,M1, d1), j =
(v,M2, d1 − d) we connect i to j with an edge with weight c̄ij = cpz −

∑
w∈Npz∪u πu. Traversing this

edge indicates that upon arriving at u with d1 units of demand remaining that the vehicle travels on
path pz meaning that it services the customers in Npz after leaving u then proceeds immediately to v.
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Given IM , EM we can solve pricing using the Bellman-Ford algorithm to find the shortest path from -1 and
-2 in EM , since EM may have negative weights but no negative weight cycles as EM describes a directed
acyclic graph.

The set of paths from source to sink in IM , EM does not include all LA routes. However we now establish
that this set of paths includes the lowest reduced cost LA route which is sufficient in order to complete step (1)
of DSSR. In order to permit every LA route to be expressed we use a multi-graph IM , EM+ where EM+ has
all edges in EM plus the following additional edges. For each z ∈ Z, p ∈ Ωz−pz ( where z = (u, v,M1,M2, d))
and nodes in i ∈ IM , j ∈ IM where i = (u,M1, d1), j = (v,M2, d1 − d) we connect i to j with an edge with
weight c̄ij = cp−

∑
w∈Np∪u πu. Traversing this edge indicates that upon arriving at u with d1 units of demand

remaining that the vehicle travels on path p meaning that it services the customers in Np after leaving u
then proceeds immediately to v. Observe that the lowest cost path from source to sink (IM , EM+), does
not use any edge between a pair of nodes i, j other than the one with lowest possible cost. Thus the lowest
cost path in (IM , EM+) uses only edges in EM . Therefore the lowest cost path on (IM , EM ) is the lowest
reduced cost LA route.

3.2.5 Fast Computation of LA Arc Costs

In this subsection we describe the pre-computation of lowest cost component path terms, a process that
ensures that pricing using LA routes is computationally fast. This pre-computation is done once prior to the
first iteration of CG and never needs to be repeated. This section shows that cp terms are easy to compute
using a dynamic program when the size of Nu sets are small.

Let P+ be defined as the set of tuples of the form p = (u, v, N̂) where for each p ∈ P+ there exists a
u1 ∈ N s.t. (u ∈ (Nu1

∪ u1), v ∈ N+ − (N̂ ∪ u ∪ u1), N̂ ⊆ Nu1
). Let cuvN̂ for any {u, v, N̂} ∈ P+ denote the

cost of the lowest cost path starting at customer u, ending at v, and visiting all customers in N̂ which we
denote as cuvN̂ . We write cuvN̂ recursively below with helper terms cu2,u2,{} = 0 and cu2,v2,{} = cu2,v2 for all
u2 ∈ N+, v2 ∈ N+ to describe the base cases.

cu,v,N̂ = min
w∈N̂

cu,w + cw,v,N̂−w ∀(u, v, N̂) ∈ P+ (8a)

In Alg 1 we generate the cp terms efficiently by iterating over the elements of P+ in the order of increasing
sizes of intermediate customer sets, using (8a) to evaluate cp.

Algorithm 1 Fast Computation of cp, ζp terms

1: for f = 1 : max(u,v,N̂)∈P+ |N̂ | do
2: for p ∈ P+ , p = {u, v, N̂}, |N̂ | = f do
3: w ← arg minw∈N̂ cuw + cw,v,N̂−w
4: cu,v,N̂ ← cuw + cw,v,N̂−w
5: ζu,v,N̂ ← [w, ζw,v,N̂−w]
6: end for
7: end for

3.2.6 Replacing Bellman Ford with Dijkstra’ Algorithm

In this section we transform the weights of EM to an equivalent representation with no negative edge weights
so that we can apply Dijkstra’s algorithm instead to find the shortest path. Applying Dijkstra’s algorithm to
an equivalent representation of EM is desirable due to the improved asymptotic time complexity of Dijkstra’s
algorithm compared to the Bellman-Ford algorithm. Using Dijkstra’s algorithm to find the shortest path
from source to sink, only the pz terms corresponding to expanded nodes are required to be computed. In
comparison, Bellman-Ford algorithm requires the computation of all possible pz terms, making Bellman-Ford
far slower computationally.

We define the demand of a node to be the demand associated with the associated customer with 0
demand associated with depots. Thus we define d{−1,{},d0} = d{−2,{},0} = 0 and di = d where i corresponds
to (u,M1, d). Observe that for any path starting at (−1, {}, d0) and ending at (−2, {}, d0) where the edges
included are the set ÊM the following property holds:

∑
ij∈Ê(di+ ([i = −1]∗d0)−dj) = d0. Let us offset c̄ij
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where i = (u,M1, d1) and j = (v,M2, d2) by adding η ∗ (d1−d2) to c̄ij where η is the smallest value sufficient
to ensure that all edge terms are non-negative. We define below the value of η.

η = − min
y∈Y

y=(u1,v1,d)
p∈Ωy

c̄p
d

(9)

Observe that cost of every path from source to sink is increased by exactly ηd0. Thus the optimal path
from source to sink is not modified. By subtracting ηd0 from the cost of the path generated by Dijkstra’s
algorithm we recover the reduced cost of the lowest reduced cost LA route.

3.2.7 Accelerating Decremental State Space Relaxation with A*

In this section we exploit information from the first iteration of DSSR to solve subsequent iterations efficiently
using the A* algorithm (Dechter and Pearl 1985). The A* algorithm operates similarly to Dijkstra’s algorithm
except that it expands the un-expanded node i ∈ IM with the lowest sum of the distance to reach the node
(denoted gi) from the source and a heuristic (hi). This heuristic hi is a lower bound on the cost of the lowest
cost path to reach the sink starting from that node.

Dijkstra’s algorithm expands all nodes with shorter distance from source than the distance from the source
to the sink meaning that all nodes. Thus in Dijkstra’s Algorithm a node i ∈ IM is expanded if gi < g−2,{},0
(and potentially some nodes for which gi = g−2,{},0). In contrast A* expands all nodes where the distance
from the source plus the lower bound to the sink is less than the distance from the source to the sink. Thus
in A* each node i ∈ IM is expanded for which gi + hi < g−2,{},0 (and potentially some nodes for which
gi + hi = g−2,{},0). Given a more accurate heuristic (meaning larger hi values )far fewer nodes are expanded
in A* than Dijkstra’s algorithm.

Computation of the heuristic should be easy so as to permit efficient search. We describe a high quality
easily computed heuristic as follows. Given empty Mu sets (as is the case during the first iteration of DSSR),
we compute the shortest distance from each node (u, {}, d) to the sink. We denote this heuristic as hud and
refer to the graph where all ng-neighbor sets are empty as the initial graph which we denote as (I0, E0)
with edge weights as described in Section 3.2.6 (meaning that the edge weight on ij is c̄ij + η(di − dj)). We
associate each hud term to nodes of the form i = (u,M1, d) for each M1 ⊆Mu. The hud terms are computed
exactly (via Bellman-Ford) once for each call to pricing and not for each iteration of DSSR. This initial graph
is much smaller than the graph in later iterations of DSSR so the computations of hud terms is not expensive.
The heuristic of hi=(−1,{},d0) is the cost of the shortest path on (I0, E0) from (−1, {}, d0) to (−2, {}, 0) as
computed by Bellman-Ford.

The A* algorithm requires that the heuristic meet the property of consistency meaning that accuracy of
the heuristic for the children is no less than that of the parent (Dechter and Pearl 1985). Below we formally
describe this property of consistency in the context of our our domain.

hi ≤ hj + c̄ij + η(di − dj) ∀(ij) ∈ EM (10)

Observe that the hud terms provide a consistent heuristic for A* since the set of LA routes on the graph
where all ng-neighbor sets are empty is a super-set of the set of LA routes on any graph described by (I0, E0)
in DSSR when the ng-neighbor sets are non-empty.

3.2.8 Cycle Selection for Augmenting ng-Neighbor Sets

In this section, we describe how we select the violating cycle in step (2) of DSSR in order to optimize the
computational time taken during pricing. In the step (2) of DSSR we select the cycle that causes the the
least number of nodes to be added to the graph (IM , EM ), since adding extra nodes in the graph IM may
require additional nodes to be expanded during A*. This is crucial as the number of nodes (u,M1, d) in the
graph (IM , EM ) can grow exponentially in terms of |Mu| ∀u ∈ N .

3.3 Subset Row Inequalities for CVRP

In this section we consider the use of the celebrated subset row inequalities (SRI) (Jepsen et al. 2008) to
tighten the CVRP LP relaxation. SRI can dramatically tighten the LP relaxation for many CVRP problems
(Costa et al. 2019). SRI are rank 1 Gomory-Chitaval cuts. SRI are satisfied for all feasible integer solutions
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for CVRP but not necessarily for all fractional solutions. The use of SRI significantly tightens the CVRP LP
relaxation. However, introducing SRI to the CVRP LP makes the pricing problem harder since one resource
is added for each SRI.

We organize the remainder of this section as follows. In 3.3.1 we display how the LP relaxation produces
a different solution from the ILP solution with an example, which motivates the use of SRI to help improve
the LP approximation. In 3.3.2 we summarize the constraints placed by SRI, and a standard example of
SRI. In 3.3.3 we show how we can derive SRI from the set cover constraint present in the LP relaxation for
CVRP. In 3.3.4 we show how we can incorporate SRI into the LP relaxation and also the lowest reduced cost
formula.

3.3.1 Motivating Example

Here we will describe an example illustrating the difference between the ILP and LP solutions to the same
problem.

In our problem, we have a depot in San Diego (SD), and vehicles of capacity 2. There is no constraint
on the number of vehicles used to service all customers. There are 3 customers in New York City (NYC),
each with unit demand (demand of one). We denote these customers as u1, u2, and u3. Customer u1 is
located in the Upper East Side, customer u2 is located in the Upper West Side, and customer u3 is located
in Staten Island. The distances between customers and the depot correspond approximately to the actual
geographical locations, so the distance from u1 to u2 is smaller than the distance from u2 and u3 and u1 and
u3. We describe the distance from the depot to any of our customers as 0.5, the distance between u1 and u2

as a very comparatively small value ε, and the distance from u2 and u3 as well as the distance from u1 and
u3 as 10ε.

Below, we define the four routes shared amongst our ILP and LP solutions with the associated costs cl
and the associated binary variables aul denoting the presence of customers in a route l. Note the customers
in aul are visited in route l in an order so as to minimize cost, which is reflected by cl.

• Route l1: defined by au1l1 = au2l1 = 1 and cl1 = 1 + ε. Our total cost is defined by a route like the
following. There is a cost of 0.5 to travel from the depot to u1, a cost of ε to travel from u1 to u2, and
a cost of 0.5 to travel from u2 to the depot.

• Route l2: defined by au3l2 = 1 and cl2 = 1. Our total cost is defined by the following route. There is a
cost of 0.5 to travel from the depot to u3, and a cost of 0.5 to travel from u3 to the depot.

• Route l3: defined by au1l3 = au3l4 = 1 and cl3 = 1 + 10ε. Our total cost is defined by a route like the
following. There is a cost of 0.5 to travel from the depot to u1, a cost of 10ε to travel from u1 to u3,
and a cost of 0.5 to travel from u3 to the depot.

• Route l4: defined by au2l4 = au3l4 = 1 and cl4 = 1 + 10ε. Our total cost is defined by a route like the
following. There is a cost of 0.5 to travel from the depot to u2, a cost of 10ε to travel from u2 to u3,
and a cost of 0.5 to travel from u3 to the depot.

One such optimal ILP solution sets decision variables θl1 = θl2 = 1. This has a total cost of 2 + ε, which
is very close to 2.

One such optimal LP solution sets decision variables θl1 = θl3 = θl4 = 1
2 . This has a total cost of 1.5 +

10.5ε, which is very close to 1.5.
The significant difference between the LP solution and ILP solutions motivates us to find additional

constraints for the LP relaxation for the overall CVRP problem. With such constraints, which will be the
SRI, we aim to have an LP relaxation which produces a solution much closer to the ILP solution for CVRP
problem instances.

3.3.2 Formal Description of Subset Row Inequalities

In this section we provide a formal definition of SRI,with examples. The simplest example of SRI for CVRP
is written as follows. For any given set of three unique customers denoted Nδ ⊆ N the number of routes
including 2 or more members of Nδ can not exceed one.∑

l∈Ω

[2 ≤
∑
u∈Nδ

aul]θl ≤ 1 ∀Nδ ⊆ N, |Nδ| = 3 (11)
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Enforcing (11) makes the LP relaxation in Section 3.3.1 tight meaning that the LP has objective 2 which
is the same as the ILP, even when all possible routes are considered.

A more general version of SRI states that for any set of customers Nδ and scalar mδ, the number of routes

using |mδ| or more customers is bounded by b |Nδ|mδ
c. For example, for Nδ sets of size 5 and mδ = 3 for each

set, the number of routes using 3 or more customers for each set Nδ is bounded by one. In another example,
we include Nδ sets of size 5, and enforce that the number of routes using 2 or more customers in each set Nδ
is bounded by two. We write a form for both examples and more cases below:

∑
l∈Ω

θl

[
mδ ≤

∑
u∈Nδ

aul

]
≤
⌊
|Nδ|
mδ

⌋
∀Nδ ⊆ N,mδ ∈ Z+ (12)

A complete form of SRI weights the decision variables describing routes by b
∑
u∈Nδ

aul

mδ
c which we derive

in Section 3.3.3. This complete form allows us to express even more restrictions on routes covering subsets
of Nδ sets, ensuring that constraining the LP relaxation using the complete form instead of the form defined
by 12 produces a solution closer to the ILP form.

∑
l∈Ω

θl

⌊∑
u∈Nδ aul

mδ

⌋
≤
⌊
|Nδ|
mδ

⌋
∀Nδ ⊆ N,mδ ∈ Z+ (13)

We can show that the complete form places more restrictions with the following example. In the complete
form, for a set Nδ with size 5 and corresponding to mδ = 2, there is a constraint that the number of selected
routes containing 2 or 3 customers in Nδ in addition to two times the number of routes containing 4 or 5
customers in Nδ cannot exceed 2. With this example, we correspondingly observe that equation (13) with
a set Nδ of size 5 and corresponding mδ = 2 describes the same constraints given by equation (12) for the
same set Nδ of size 5 but utilizing two different mδ values 2 and 4 in a single inequality.

We also observe that equation (13) may constrain the LP relaxation when b |Nδ|mδ
c < |Nδ|

mδ
, however, the

LP relaxation will not be constrained when b |Nδ|mδ
c = |Nδ|

mδ
. Failing to constrain the LP relaxation with such

SRI values adds constraints without changing the value produced from an LP relaxation without SRI.
We prove the above statements using an example, and then extrapolate this example to satisfy the

generality of our observations. In our example, we see that for a SRI defined by a Nδ set of size 4 and
corresponding mδ = 2 that the expression that the right hand side of equation (13) is unmodified when the
floor operation is not used, but the left hand side of equation (13) can be modified when the floor operation
is not used.

We now establish formally that for an SRI δ to tighten (3) it is a necessary condition that b |Nδ|mδ
c < |Nδ|

mδ
.

Observe that if the floor operation is removed from both the RHS and LHS of (13) then the induced equation
is the average of the constraints enforcing that each customer is covered exactly once each of which is satisfied
by any solution to (3). Now observe that the average of satisfied inequalities (with≤ facing the same direction)

is also a satisfied inequality. If |Nδ|mδ
c = |Nδ|

mδ
then the floor operation does not decrease the RHS but may

decrease the LHS of (13). Thus we have established the claim.
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3.3.3 Derivation of Subset Row Inequalities

Below we derive SRI as seen in (13), given for any Nδ ⊆ N ,mδ ∈ Z+ s.t. b |Nδ|mδ
c < |Nδ|

mδ
with annotation

provided below the equations. ∑
l∈Ω

θl(
∑
u∈Nδ

aul) ≥ |Nδ| (14a)

∑
l∈Ω

θl(
∑
u∈Nδ

aul) = |Nδ| (14b)

∑
l∈Ω

θl

∑
u∈Nδ aul

mδ
=
|Nδ|
mδ

(14c)⌊∑
l∈Ω

θl

∑
u∈Nδ aul

mδ

⌋
=

⌊
|Nδ|
mδ

⌋
(14d)

∑
l∈Ω

⌊
θl

∑
u∈Nδ aul

mδ

⌋
≤
⌊
|Nδ|
mδ

⌋
(14e)

∑
l∈Ω

θl

⌊∑
u∈Nδ aul

mδ

⌋
≤
⌊
|Nδ|
mδ

⌋
(14f)

1. In (14a): We write the sum of inequalities of the standard cover
∑
l∈Ω aulθl ≥ 1 over Nδ. Let θ∗, θ+

be any fractional solution/binary valued solutions to the 3 respectively. Both θ∗ and θ+ satisfy (14a)
since the sum of satisfied inequalities (with ≥ facing the same way) is also satisfied.

2. In (14b) we observe that for any optimal integer solution no customer is visited more than once thus
we replace the ≥ with an =.

3. In (14c): We divide both sides by positive integer mδ. Both θ∗ and θ+ satisfy (14b) since dividing both
sides of an equality by a positive number produces another satisfied equality.

4. In (14d) we round down to the nearest integer on both sides using a floor operations. Since the LHS
of (14c) is equal to the RHS of (14c), this equality is also satisfied for both θ∗ and θ+.

5. In (14e) we move the floor operations into the sum. Since the floor of a sum of values is no less than
the sum of floor of each of those values, then both θ∗ and θ+ satisfy (14e).

6. In (14f) we move θ outside of the floor operation. Since θ+
l is binary valued for any l ∈ Ω by definition

then bθl
∑
u∈Nδ

aul

mδ
c = θlb

∑
u∈Nδ

aul

mδ
c hence θ+ satisfies (14f). However (14f) may not be satisfied for

non-binary θ∗. In fact for the example in Section 3.3.1 this inequality is not satisfied for the optimal
fractional LP solution.

We use ∆ which we index by δ to denote the set of SRI which we are considering in our problem, where
δ is associated with Nδ,mδ. We rewrite (14f) using aδl, bδ to help compact our notation, and define these
terms as follows.

aδl = b
∑
u∈Nδ aul

mδ
c ∀l ∈ Ω, δ ∈ ∆ (15a)

bδ = b |Nδ|
mδ
c ∀δ ∈ ∆ (15b)

We now write a compacted form of (14f) as follows for any given δ ∈ ∆.∑
l∈Ω

θlaδl ≤ bδ ∀δ ∈ ∆ (16)
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3.3.4 Column/Row Generation to Solve Optimization using SRI

In this section we consider a mechanism to solve optimization over all of Ω,∆. Note that for clarification we
refer to our column generation problem as a Column/Row Generation CGR) problem to better reflect the
inclusion of the subset row inqeualities.

Given any subset of SRI denoted ∆R ⊆ ∆ and set of columns ΩR ⊆ Ω we denote the Restricted Master
Problem (RMP) as Ψ∗(ΩR,∆R) which we write formally below with dual variables next to the associated
constraints.

Ψ∗(ΩR,∆R) = min
θ≥0

∑
l∈ΩR

clθl (17a)

∑
l∈ΩR

aulθl ≥ 1 ∀u ∈ N [πu] (17b)

∑
l∈ΩR

θl ≤ K [−π0] (17c)

∑
l∈ΩR

aδlθl ≤ bδ ∀δ ∈ ∆R [−πδ] (17d)

Given a solution θ to (17) and set ∆ we write the identification of the most violated SRI set Nδ and associated
value mδ for δ ∈ ∆ (which is called separation) as follows.

min
δ∈∆

bδ −
∑
l∈ΩR

aδlθl (18)

Typically new constraints are only added once the MP is solved optimally given fixed subset of SRI
∆R ⊆ ∆. The pricing operation given π is written below.

min
l∈Ω

c̄l (19a)

c̄l = cl + π0 −
∑
u∈N

πuaul +
∑
δ∈∆R

πδaδl ∀l ∈ Ω (19b)

Pricing using (19a) is tricky to solve as the addition of the πδ terms alters the structure of the pricing
problem. This is known to be very problematic. Each δ ∈ ∆R introduces an additional resource to the
resource constrained shortest path (RCSP) solver that must be kept track of. In Alg 2 we write the CG
problem with SRI added in a cutting plane manner.

In computational studies using SRI, computational benefit is achieved by using ∆ for which Nδ is small
(typically 3) for all δ ∈ ∆ (Costa et al. 2019, Wang et al. 2017, Yarkony et al. 2020).

4 LA Arcs Encoding Subset Row Inequalities

In this section we tighten the CG LP relaxation with a variant of subset row inequalities (SRI) that is
computationally efficient to consider. Specifically we introduce we provide a marginally weakened form of

Algorithm 2 Basic Column/Row Generation with SRI

1: ΩR ← from user
2: ∆R ← from user typically empty
3: repeat
4: repeat
5: θ, π ← Solve Ψ∗(ΩR,∆R)
6: l∗ ← arg minl∈Ω c̄l
7: ΩR ← ΩR ∪ l∗
8: until c̄l∗ ≥ 0
9: δ∗ ← arg minδ∈∆ bδ −

∑
l∈ΩR

aδlθl
10: ∆R ← ∆R ∪ δ∗
11: until bδ∗ −

∑
l∈ΩR

aδ∗lθl ≥ 0
12: Return last θ generated. This can be used inside branch-cut-price.
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SRI, which we call LA-SRI, where the use of LA-SRI does not alter the structure of the pricing problem
when using the Local Area (LA) routes relaxation based solver (Mandal et al. 2022). This permits the use of
large numbers of LA-SRI defined over large subsets of customers to be used without adding computational
difficulty to pricing.

We organize this section as follows. In Section 4.1 we describe SRI using LA arcs in a manner that does
not permit efficient pricing. In Section 4.2 we introduce LA-SRI. In Section 4.3 we describe how the use of
LA-SRI can be placed directly into the edge weights used in the LA route pricing problem meaning that
the structure pricing is unmodified. In Section 4.4 we contrast SRI and LA-SRI so as to demonstrate where
LA-SRI perform differently than SRI.

4.1 Formulating SRI over LA Arcs

We introduce the following notation to keep track of the inclusion of SRI in LA -arcs.
Let for any y ∈ Y, p ∈ Ωy, δ ∈ ∆ where y = (u, v, d) us define apδ as follows.

apδ =
∑

w∈Np∪u
[w ∈ Nδ] ∀y ∈ Y, y = (u, v, d), p ∈ Ωy (20)

Recall that Np contains all customers in the LA arc p excluding u, v. We use apl = 1 if route l includes LA
arc p.

Observe that for any given l ∈ Ω that we can write the sum of customers in a given subset corresponding
to an SRI in terms of the inclusion of customers in the associated LA arcs.∑

u∈Nδ

aul =
∑
y∈Y
p∈Ωy

apδapl ∀l ∈ Ω, δ ∈ ∆ (21)

Using apδ we rewrite (14f) as follows. We begin by we (14f) in terms of apδ using (21)

∑
l∈Ω

θlb

∑
y∈Y
p∈Ωy

apδapl

mδ
c ≤ b|Nδ|

mδ
c ∀δ ∈ ∆ (22)

4.2 LA-SRI: Formulating SRI in Marginally Weakened Form over LA Arcs

In this section we relax (22) so as to permit efficient inclusion in our LP relaxation. Starting from (22) we
move the floor operation inside of the sum producing the following.

∑
l∈Ω

θlb

∑
y∈Y
p∈Ωy

apδapl

mδ
c ≥

∑
l∈Ω

∑
y∈Y
p∈Ωy

θlaplb
apδ
mδ
c ∀δ ∈ ∆ (23)

Thus we enforce the following ∑
l∈Ω

∑
y∈Y
p∈Ωy

θlaplb
apδ
mδ
c ≤ b|Nδ|

mδ
c ∀δ ∈ ∆ (24a)

However since the LHS of (24a) is no greater than (22) the inequality (24a) is weaker than (22). However
we shall see that these inequalities are easier to price over. Observe that the larger the size of the LA-
neighborhood the less the gap between (24a) and (22) tends to become (though this need not be monotonic
as we will see in Section 4.4). Let a∗pδ be defined for efficient exposition as follows.

a∗pδ = bapδ
mδ
c ∀p ∈ ∪y∈Y Ωy, δ ∈ ∆ (25)

Let a∗δl be the LHS value associated with valid inequality δ with variable l in (24a) which is defined as follows.

14



a∗δl =
∑
p∈Ωy
y∈Y

apla
∗
pδ ∀l ∈ Ω, δ ∈ ∆ (26)

Below we write the RMP enforcing all LA-SRI for ∆R as described in (24a), which we denote as Ψ(ΩR,∆R)
.

Ψ(ΩR,∆R) = min
θ≥0

∑
l∈ΩR

clθl (27a)

∑
l∈ΩR

aulθl ≥ 1 ∀u ∈ N [πu] (27b)

∑
l∈ΩR

θl ≤ K [−π0] (27c)

∑
l∈ΩR

a∗δlθl ≤ bδ ∀δ ∈ ∆R [−πδ] (27d)

4.3 Pricing under LA-SRI

We now consider efficient pricing which we show is unmodified. This formulation for pricing over LA routes
can be trivially adapted to consider LA-SRI.

The reduced cost of a route l in (27) is written in terms of dual variables π as follows.

c̄l = cl + π0 −
∑
u∈N

πuaul +
∑
δ∈∆R

πδa
∗
δl ∀l ∈ Ω (28)

We now rewrite (28) in terms of helper variable c̄p which is the reduced cost associated with path p with is
defined below.

c̄p = cp −
∑

w∈Np∪u
πw +

∑
δ∈∆R

πδa
∗
pδ ∀y ∈ Y, p ∈ Ωy, y = (u, v, d) (29)

The reduced cost of a route l ∈ Ω (or ΩLA) can now be written as follows using aij,l = 1 edge ij lies in route
l and otherwise is aijl = 0

c̄l = (28) =
∑
ij∈E

aijlc̄ij ∀l ∈ Ω (30a)

c̄(−1,d0),(u,d) = c−1u + π0 ∀u ∈ N, d ≥ du (30b)

c̄i,j = cp −
∑

w∈Np∪u
πw +

∑
δ∈∆R

a∗pδπδ ∀i, j ∈ E, i 6= (−1, d0), p = pij , i = (u, d1), j = (v, d2) (30c)

Thus pricing can be carried out identical to as in the standard LA routes. The only difference is that the
edge weights are changed. However no additional resources are used.

4.4 Tightness of LA-SRI Relative to SRI

In this section we compare tightening effect of a given SRI compared to the associated LA-SRI. We show
when the relaxation of (22) to (24a) weakens the LA-SRI relative to the SRI and when it does not. However,
we observe with well chosen and large LA-neighborhoods that the relaxation is not significantly weakened.
We provide substantial proof for these phenomena with an analysis of examples below, and define these
examples over the following problem domain.

In our examples, suppose that we have a depot in San Diego (SD), and vehicles of capacity 201. We have
three customers in New York City (NYC), named NYC1, NYC2, and NYC3, and thee customers in San
Diego, named SD1, SD2, SD3. NYC and SD are far from each other but the associated customers of each
city are nearly co-located. Each NYC customer has a demand of 100 and the SD customer has a demand
of 1. Each customer has neighbor sizes of 2, so each customer in NYC considers one another to be an LA
neighbor, and each customer in San Diego considers one another to be an LA neighbor. This is because we
set LA neighbor sets by closest location.
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1. Consider a case with SRI defined to be Nδ=[NYC1,NYC2,SD1] and mδ=2. Now consider routes l1
and l2. Route l1 has the sequence of customers (with depot added ) as follows [-1, NYC1, NYC3, SD1,
SD2, -2] and route l2 has the sequence [-1, NYC1, NYC2, SD2, SD3, -2]. Note that the special indexes
are 1,3 for both l1 and l2. Observe that for route l1 the associated variables are defined to be aδl1 = 1
and a∗δl1 = 0. However, for route l2 observe that aδl2 = 1 and a∗δl2 = 1.

2. Consider a case with SRI defined to be Nδ=[NYC1,NYC2,NYC3] and mδ=2. Now consider routes l3
and l4. Route l3 has the sequence [-1, NYC1, NYC2, SD1, -2] and route l4 has the sequence [-1, NYC1,
SD1, NYC2, -2]. Note that the special indexes are 1,3 for l3 and 1,2,3 for l4. Observe that for route l3
the associated variables are defined to be aδl3 = a∗δl3 = 1. However, for route l4 observe that aδl4 = 1
and a∗δl4 = 0.

When solving the CVRP LP relaxation in (27) with the LA neighborhoods defined above alongside all
SRI of |Nδ| = 3,mδ = 2, we enforce that at least two routes visiting at least one customer in SD and
at least one customer in NYC are used. The two routes must visit different customers in SD and NYC.
When solving the CVRP LP formulation with LA neighborhoods and arcs but without SRI, there is no such
constraint on routes used. Given our relaxed formulation of LA-SRI constraints, one would think that larger
LA neighborhoods always tightens the bound at the expense of greater computational cost during iterations
of DSSR in pricing. However, we find that increasing the size of LA neighborhoods may not always tighten
the bound, which we demonstrate with an example below.

Consider that we add to each the LA neighborhoods in customers in SD so that the LA neighbors of
customers in SD are defined as follows: NSD1 = {SD2, SD3, NY C1},NSD2 = {SD1, SD3, NY C2},NSD3 =
{SD1, SD2, NY C3}. These LA neighborhood sets are still defined using closest distance. Now, consider the
following solution to the MP Ψ(Ω,∆) using θl1 = θl2 = θl3 = θl4 = 1

2 where routes l1, l2, l3, l4 are defined as
sequences of the following LA arcs.

• l1 = {(−1, SD1), (SD1, NY C1, NY C2), (NY C2,−2)}

• l2 = {(−1, SD2), (SD2, NY C2, NY C3), (NY C3,−2)},

• l3 = {(−1, SD3), (SD3, NY C3, NY C1), (NY C1,−2)},

• l4 = {(−1, SD1), (SD1, SD2, SD3,−2)}

Observe that this solution uses 3
2 cross country routes but no integer solution can use fewer than 2 cross

country routes.
Based on the examples above we hypothesize that SRI defined over customers localized in space are

crucial for tightening the expanded LP relaxation of CVRP (and other VRP). Furthermore, we observe that
it is unlikely for an optimal solution to the expanded LP relaxation to use routes that frequently return to
areas of customers localized in space after leaving such areas. This is because including such routes in an
LP solution would lead to sub-optimal cost. An example of such an route is [-1, NYC1, SD1, NYC2, -2]; as
instead, the customers can be serviced at lower cost using the route [-1, NYC1, NYC2, SD1, -2]. Thus, for
violated SRI defined over customers localized in space, a key opportunity for the corresponding LA-SRI to
not be violated is when LA arcs exist for which the following holds: the penultimate customer of the LA arc
is nearby the final customer of the LA arc. By avoiding the construction of LA neighborhoods that allow for
presence of such LA arcs, we diminish the possibility of weakening the LP relaxation using LA-SRI instead
of SRI.

5 Stabilization of Optimization Exploiting LA Route Structure

In this section we describe a stabilized version of CG adapted to efficiently solve the CG master problem
(MP) that does not alter pricing. We achieve this by altering the sequence of dual solutions generated by
CG algorithm with the aim that fewer iterations of CG are required to solve the MP. At each iteration of CG
a more computationally intensive RMP is solved that includes a larger set of columns than those generated
during pricing. Solving over this set of columns does not dramatically increase the time taken since a simple
computational structure is used to ensure that an exponential number of such columns can be encoded with
a finite number of variables. This set of columns is written as ∪l∈ΩRΩl where Ωl contains an exponential
number of columns related to column l. We refer to Ωl as the family of column l. As a result, when solving
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the RMP in our stabilized version of CG, we solve Ψ(∪l∈ΩRΩl,∆R) instead of Ψ(ΩR,∆R) to accelerate the
convergence of CG. In this section we develop an efficient solver for this approach that does not enumerate
all ∪l∈ΩRΩl and does not employ expensive pricing operations.

Families of columns are used in Graph Generation (GG) methods (Yarkony et al. 2021, Yarkony and
Regan 2022). In this paper we exploit LA routes to describe families that are larger than those of (Yarkony
et al. 2021, Yarkony and Regan 2022, Mandal et al. 2022) and permit the introduction of LA-SRI, which can
not be done using the original GG families.

We organize this section as follows. In Section 5.1 we formally characterize the families in our formulation.
In Section 5.1 we describe the generation of a family from a column. In Section (5.3) we describe the new
RMP over graphs associated with families of columns leading to faster convergence inspired by CG. In Section
(5.4) we consider a fast way to solve the RMP inspired by Principled Graph Management (PGM)(Yarkony
and Regan 2022).

5.1 Families of Columns for CVRP

For any given route l we associate it with a strict total order of the members N+ with βl where −1,−2 have
the smallest and largest βl values respectively. A route l̂ ∈ Ω lies Ωl if and only if LA arcs consistent with the
ordering βl are used. An LA arc p in Ωy (for y=(u, v, d)) is consistent with the ordering βl if βlu < βlw < βlv
for any w ∈ (Np where Np is a set of the intermediate customers in route l; and βlu < βlv. It is mandatory
that route l lies in Ωl for all l ∈ Ω. We use Ωly to refer to the subset of p ∈ Ωy for which p is consistent with

ordering βl. We use Y l to denote the subset of y ∈ Y for which |Ωly| 6= 0. We use El to denote

5.2 Generation of Ordering Given a Route

In this section we describe the procedure to generate βl terms given a route l from (Yarkony et al. 2021).
This construction is motivated by the observation that customers that are in similar physical locations should
be in similar positions on the ordered list. Having customers in such an order ensures that a route in Ωl can
visit all customers close together without leaving the area and then coming back. We use a set Nl to denote
the customers in the route l. We initialize the ordering with the customers in Nl sorted in order from first
visited to last visited. Then, we iterate over u ∈ (N −Nl) and insert u behind the customer in (Nl) nearest
to u. We insert u that are closer to the depot than any customer in Nl at the beginning of the list. We
observe that by using the aforementioned construction that l lies in Ωl for all l ∈ Ω. We use El ⊆ E0 (where
node/edge sets I0, E0 is defined in Section 3.2.7) to denote the set of edges in E0, (u, d1), (v, d2) for which
βlu < βlv and in addition where either u = −1 or Ωly=(u,v,d1−d2) is non-empty.

5.3 Restricted Master Problem Using Stabilization

In this section we describe a new RMP formulation that efficiently describes Ψ(∪l∈ΩRΩl,∆R).
We now define an LP over the graphs defined by the nodes,edge sets I0, El for each l ∈ ΩR. We use the

following decision variables with associated cost terms defined below.

• We use decision variable xlp to be a variable which denotes if a p composing a path in the family l is
used in the solution, and how many vehicles (can be fractional or 1) are used for p. There is one such
variable for each p ∈ ∪y∈Y lΩly, l ∈ ΩR.

• We use decision variable xlij to be a variable which denotes if an edge ij in a route in corresponding to
family l is used in the solution, and how many vehicles (can be fractional or 1) are used for ij. There
is one such variable for each l ∈ ΩR, ij ∈ El.

• We use decision variable θl to be a variable which denotes if a route l is used in the solution, and how
many vehicles (can be fractional or 1) is used for that route l.

• We use cl to denote the cost associated with traveling through route l.

• We use cp to denote the cost associated with traveling in path p, ensuring that the cost of traveling
through the intermediate customers is minimized.

• We use c−1,(u,d) to denote the cost associated with traveling from the source to customer u, which is
also simply the distance from the source to customer u.
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Using our decision variables x, θ we write Ψ(∪l∈ΩRΩl,∆R) as a LP below which we refer to as Ψ+(ΩR,∆R)
(with equivalence proven in Appendix A) We provide annotation of this RMP below the equations.

Ψ+(ΩR,∆R) = Ψ(∪l∈ΩRΩl,∆R) = min
x≥0
θ≥0

∑
l∈ΩR

clθl +
∑
l∈ΩR
y∈Y l
p∈Ωly

cpx
l
p +

∑
l∈ΩR
u∈N

d0≥d≥du

c−1ux
l
(−1,d0),(u,d) (31a)

∑
l∈ΩR

θl +
∑
l∈ΩR

∑
ij∈El

[i = (−1, d0)]xlij ≤ K [−π0] (31b)

∑
l∈ΩR

aulθl +
∑
l∈ΩR
y∈Y l
p∈Ωly

xlpaup ≥ 1 ∀u ∈ N [πu] (31c)

∑
l∈ΩR

a∗δlθl +
∑
l∈ΩR
y∈Y l
p∈Ωly

a∗δpx
l
p ≤ bδ ∀δ ∈ ∆R [−πδ] (31d)

∑
p∈Ωly

xlp =
∑
ij∈El
i=(u,d1)

j=(v,d1−d)

xlij ∀y ∈ Y l; y = (u, v, d), l ∈ ΩR, i ∈ I0 − ((−1, d0) ∪ (−2, 0)) (31e)

∑
ij∈El

xlij =
∑
ji∈El

xlji ∀i ∈ I0, ui /∈ {−1,−2}, l ∈ ΩR (31f)

• (31a): We seek to minimize the sum of the costs of the LA arcs and edges (from the depot) and routes
used in our solution.

• (31b): We enforce that no more that K vehicles leave the depot by ensuring that the sum of edges
from the source and the sum of other routes used in our solution do not exceed K.

• (31c): We enforce that each customer is serviced in at least one LA arc or route by checking for all
customers that the sum of decision variables aul (which denotes if a route l contains customer u) and
aup (which denotes if a LA arc p contains customer u) corresponding to a customer u is at least one.

• (31d): We enforce all LA-SRI over the LA arcs and routes which form our solution. This is done by
taking the sum of a∗δl for all routes l ∈ ΩR and a∗δp and ensuring that this sum does not exceed bδ for
all LA-SRI δ ∈ ∆R.

• (31f): We enforce that the edges selected for each family l describe a set of routes. This means that
for every family l, that the total weight of incoming edges is equal to that of the outgoing edges on all
nodes corresponding to customers u ∈ N .

• (31e): We enforce that the the LA arcs selected are consistent with the edges selected for a given
family. This is done by ensuring that the number of paths also matches the number of edges starting
at a customer u, ending at a customer v, and servicing demand d.

The CG optimization procedure used to solve Ψ(Ω,∆R) alternates between solving (31) (meaning Ψ+(ΩR,∆R))
and adding to ΩR the lowest reduced cost column l ∈ Ω. We price over θ (never x) to add in a new column
l to ΩR. Then, we add to the RMP the x terms associated with l. We never consider θ terms when solving
the RMP as they are redundant given x. However we include the θ terms in (31) so as to make clear that
pricing for (31) is identical to previous pricing problems. Given our solver for Ψ(Ω,∆R) we solve Ψ(Ω,∆)
and produce an optimal solution using the column/row generation approach described in Alg 2.

5.4 Efficient Solution to the Restricted Master Problem

In this section we consider the efficient solution of (31) by adapting the ideas of Principled Graph Management
(PGM) (Yarkony and Regan 2022). Observe that (31) may have a very large number of variables as |ΩR|
grows and for problems where |Ωy| is large for some y ∈ Y ; thus making the solution to (31) at each iteration
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of CG intractable. Thus we seek to construct a small set of edges, paths denoted Êl ⊆ El ∀l ∈ ΩR, Ω̂ly ⊆
Ωly (y ∈ Y l ∀l ∈ ΩR) respectively s.t. solving (31) over these terms (denoted Ψ+(ΩR,∆R, {Êl}, {Ω̂ly}))
yields the same solution as (31); where for short hand we use {Êl}, {Ω̂l} to describe the Êl, Ω̂ly for each

l ∈ ΩR, (y ∈ Y l, l ∈ ΩR). We define Ψ+(ΩR,∆R, {Êl}, {Ω̂ly})) formally below.

Ψ+(ΩR,∆R, {Êl}, {Ω̂ly}) = min
x≥0

∑
l∈ΩR
y∈Y l

p∈Ω̂ly

cpx
l
p +

∑
l∈ΩR
u∈N

d0≥d≥du
(−1,d0),(u,d)∈Êl

c−1ux
l
(−1,d0),(u,d) (32a)

∑
l∈ΩR

∑
ij∈Êl

[i = (−1, d0)]xlij ≤ K [−π0] (32b)

∑
l∈ΩR
y∈Y l

p∈Ω̂ly

xlpaup ≥ 1 ∀u ∈ N [πu] (32c)

∑
l∈ΩR
y∈Y l

p∈Ω̂ly

a∗δpx
l
p ≤ bδ ∀δ ∈ ∆R [−πδ] (32d)

∑
p∈Ω̂ly

xlp =
∑
ij∈Êl
i=u,d1

j=v,d1−d

xlij ∀y ∈ Y l; y = (u, v, d), l ∈ ΩR, i 6= (−1, d0), (32e)

∑
ij∈Êl

xlij =
∑
ji∈Êl

xlji ∀i ∈ I0, ui /∈ {−1,−2}, l ∈ ΩR (32f)

To solve (31) we alternate between the following two steps.

• Solve Ψ+(ΩR,∆R, {Êl}, {Ω̂ly}) producing the dual solution π. This is fast since the sets Ω̂ly and Êl are

generally much smaller than Ωly, E
l respectively.

• Iterate over l ∈ ΩR and compute the lowest reduced cost route in Ωl denoted l̂l. The computation
of l̂l is a simple shortest path computation (not a resource constrained shortest path problem) and
corresponds to the lowest cost path on the graph with edge set El where the edge weights are defined
as follows.

c̄(−1,d0),(u,d) = c−1,u + π0 (33a)

c̄ij = min
p∈Ωly

y=(u,v,d1−d2)

c̄p ∀i = (u, d1), j = (v, d2), i, j ∈ El (33b)

c̄p = cp −
∑
u∈N

aupπu +
∑
δ∈∆R

a∗δpπδ ∀p ∈ Ωly, y ∈ Y l (33c)

Observe that via the ordering of βl that the route l̂l must be elementary as all paths from source to sink
describe elementary routes. If l̂l has negative reduced cost then we update the edges,paths associated
with route l. We denote the edges used in this route as El(l̂) and the paths used in this route for a

given y in Y l as Ωly(l̂). Next we augment each Êl, Ω̂ly(∀y ∈ Y l) with the edges with El(l̂l) and Ωly(l̂l).

When we find that l̂l has non-negative reduced cost for each l ∈ ΩR, we terminate since we have solved
(31) optimally.

We refer to the operation of generating edge weights and computing the associated shortest path as
the RMP-Shortest Path computation (RMP-SP).

We must initialize the {Ω̂ly}, {Êl} terms in order to ensure that (32) has a feasible solution. In experiments

we found that using Ω̂ly, Ê
l to be the terms generated during RMP-SP for a route l over the entire course

of CG optimization thus far worked well. We could just as easily use all edges that are associated with
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non-zero xlij , x
l
p values in the final solution produced last time (31) was solved using (32). In our experiments

(which had no maximum number of vehicles) prior to the first iteration of CG we included all edges and
paths corresponding to the route starting at the depot, visiting a single customer u, and then returning to
the depot (for each u ∈ N). This means that for the initial l in CG, denoted l0 we define Êl0 to include
(−1, d0), (u, du),and (u, du), (−2, 0) for each u ∈ N ; and set Ω̂l0y as empty except for terms y = (u,−2, du)
(for each u ∈ N) which is set to contain the path starting at u ending at −2 and visiting no intermediate
customers.

In Alg 3 we provide a formal description of our fast optimization of (31) using RMP-SP which we annotate
below.

• In Line 1 we initialize ΩR, {Êl}, {Ω̂ly} from the user.

• In the loop defined in Lines 2- 15 we construct a sufficient set of {Êl}, {Ω̂ly} to solve Ψ+(ΩR,∆R)

exactly meaning Ψ+(ΩR,∆R, Ê, Ω̂) = Ψ+(ΩR,∆R).

– In Line 3 we solve Ψ+(ΩR,∆R, {Êl}, {Ω̂ly}) as an LP producing π, x terms.

– In Lines 4-10 we iterate over l ∈ ΩR and augment {Êl}, {Ω̂ly} using RMP-SP.

∗ In Lines 5 we generate the lowest reduced cost column in the family Ωl which we denote as
l̂l. It is important to note that this is a simple shortest path and not a hard pricing problem.

∗ In Line 6 we determine if Êl, Ω̂ly need to be augmented which is true if l̂l has negative reduced

csost. In Line 7 we add any edges used in l̂l to Êl expanding the set of edges. In Line 8 we
similarly, add any paths used in l̂l to the corresponding Ω̂ly.

– In Line 11 we terminate the loop once no path in any graph El for l ∈ ΩR has negative reduced
cost, since at this point we have solved Ψ+(ΩR,∆R) exactly.

• In Lines 12- 15 we describe an optional step to ensure that Êl, Ω̂ly do not grow too large causing
computational difficulty. In practice we found this unnecessary. In this step we remove all terms for
which the corresponding xlij ,x

l
p are zero valued for the solution of (31) for the final solution to (32).

Given Alg 3 we describe the complete optimization approach for solving Ψ(Ω,∆) using column/row generation
in Alg 4 with annotation below.

• In Lines 1-2 we initialize from the user the set of columns in ΩR. In our experiments this is a single
column l randomly generated with edge,path sets Êl, Ω̂ly ∀y ∈ Y l that can be used to generate all
routes containing a single customer (one for each u ∈ N).

Algorithm 3 Fast Solver for (31)

1: ΩR, {Êl}, {Ω̂ly} ← from user
2: repeat
3: x, π ← Solve (32) over Êl, Ω̂ly
4: for l ∈ ΩR do
5: l̂l ← arg minl∈Ωl c̄l. Fast and easy shortest path calculation (not resource constrained).
6: if c̄l̂l < 0 then

7: Êl ← Êl ∪ El(l̂l)
8: Ω̂ly ← Ω̂ly ∪ Ωly(l̂l) for each y ∈ Y l
9: end if

10: end for
11: until c̄l̂l ≥ 0 for all l ∈ ΩR
12: for l ∈ ΩR do
13: Êl ← {ij ∈ Êl s.t. xlij > 0} OPTIONAL NOT USED IN EXPERIMENTS

14: Ω̂ly ← {p ∈ Ω̂ly s.t. xly > 0} for each y ∈ Y l. OPTIONAL NOT USED IN EXPERIMENTS
15: end for
16: Return last x, π, {Êl}, {Ω̂ly}
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• In Line 3 we initialize the set ∆R to be empty.

• In Lines 4-12 we solve the master problem over all Ω,∆, which is written Ψ(Ω,∆).

– In Lines 5-9 we solve Ψ(Ω,∆R).

∗ In Line 6 we solve Ψ+(ΩR,∆R) using Alg 3.

∗ In Line 7 we find the lowest reduced cost route l∗ using the LA route algorithm (Mandal et al.
2022). Recall that c̄l is defined in (28) for each l ∈ Ω.

∗ In Line 8 we add the column l∗ to the ΩR set.

∗ In Line 9 we terminate CG when the lowest reduced cost route in Ω has non-negative reduced
cost.

– In Lines 10-11 we find one or more violated LA-SRI which are then added to ∆R. In our experi-
ments we add the 30 most violated LA-SRI (or all violated LA-SRI if less than 31 are violated)

– In Line 12 we terminate optimization when no LA-SRI are violated since we have solved Ψ(Ω,∆)
optimally.

• Line 13: Return x providing a primal solution that can be fed into branch & price.

It is often useful to generate an approximate optimal solution to the optimal integer linear programming
(ILP) solution to CVRP. To do this efficiently we solve the RMP in Ψ+(ΩR,∆R, {Êl}, {Ω̂l}) as described
in (32) as an ILP given {Êl}, {Ω̂ly} generated during Alg 4. We found that this produces quality integer
solutions in practice.

6 Experiments

In this section we demonstrate the value of LA-SRI to tighten the expanded LP relaxation for the Capacitated
Vehicle Routing Problem (CVRP) without altering the structure of the pricing problem. We consider a
dataset of CVRP problem instances that vary by numbers of customers and vehicle capacity. We perform
experiments using Alg 4 with different parameters for the LA-SRI (meaning the of range of |Nδ| terms for
δ ∈ ∆) and the sizes of LA neighbor sets (sizes of Nu). Larger sizes of sets ∆,|Nu| have the potential to tighten
the expanded LP relaxation at the expense of greater computation time. In these experiments, pricing and
determination of the lowest reduced cost route is solved using Decremental State Space Relaxation (Righini
and Salani 2008, 2009) (DSSR) over LA routes as described in Section 3.2.3.

We organize this section as follows. In Section 6.1 we consider the parameterizations used for our col-
umn/row generation (CRG) solver as described in Alg 4 and CVRP problems in our data set. In Section 6.2
we discuss the hardware and software implementation details for our experiments. In Section 6.3 we quantify
tightening of the LP relaxation achieved by adding LA-SRI. In Section 6.4 we describe experiments that we
conduct, which show the value of LA-SRI in the context of efficiently tightening the expanded LP relaxation
for CVRP. In Section 6.5 we discuss the results of these experiments.

Algorithm 4 Complete Solver for the Master Problem

1: ΩR,← from user
2: Êl, Ω̂ly from user for all l ∈ ΩR,(y ∈ Y l, l ∈ ΩR) respectively
3: ∆R ← {}
4: repeat
5: repeat
6: x, π, {Êl}, {Ω̂ly} ← Solve for (31), using Alg 3
7: l∗ ← arg minl∈Ω c̄l via the LA routes pricing algorithm
8: ΩR ← ΩR ∪ l∗
9: until c̄l∗ ≥ 0

10: δ∗ ← Most violated constraint over (31d) given x. More than one violated constraint can be added.
11: ∆R ← ∆R ∪ δ∗
12: until (31d) is not violated for δ∗
13: Return last x generated by line 6. This x can be used inside branch & price.
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6.1 Algorithms and Data Sets Compared

In this section, we describe the problems in our data set and the CRG solver parameterizations consid-
ered. We considered CVRP problem instances with the following parameter possibilities for (number of
customers,vehicle capacity): (20,4);(30,5);(40,8). Each customer has unit demand in each CVRP problem
instance. We generate 10 problem instances for each CVRP parameter possibility (meaning 10 for each of
(20,4);(30,5);(40,8)). Each instance randomizes the locations of customers and the starting and ending depot.

We used a total of twelve parameterizations for our CRG solver described in Alg 4. The trade off is
an increase in computation time vs possible improvement in the tightness of the LP relaxation. Larger LA
neighbor sets and larger classes of LA-SRI can tighten the LP relaxation but may increase computation
time. Each CRG parameterization is associated with a different number of LA neighbors per customer,
and different classes of LA-SRI used. We set LA neighbor sets for a given customer u with size x to be
the x closest customers (by spatial distance) to u (excluding u since u /∈ Nu by definition). We had one
solver parameterization for each pair of unique choices for the number of LA neighbors and the LA-SRI
parameterization. We considered four choices for the number of LA neighbors per customer (4, 6, 8, 10) and
three choices for LA-SRI parameter values denoted a, b, c which are described below using: ∆α,β to denote
the set of LA-SRI consisting of α (meaning |Nδ| = α) unique customers in N and for which mδ = β.

• option a: ∆← ∆3,2.

• option b: ∆← ∆3,2 ∪∆4,3

• option c: ∆← ∆3,2 ∪∆5,2 ∪∆5,3. Note that by definition of LA-SRI in (16) ∆4,3 is dominated by ∆5,3

and hence is not included in option c. By dominated we mean that any solution satisfying all LA-SRI
in ∆5,3 will also satisfy all LA-SRI in ∆4,3 but not vice versa.

We use F which we index by f to denote the set of CRG solver parameterizations.

6.2 Implementation Details

All code is implemented in MATLAB and the LP solved in the RMP at each iteration of Alg 3 (which is
called in Alg 4) are solved using the MATLAB “linprog” solver with default options. All LPs are solved from
scratch each time. In future work, we intend to use CPLEX and C++/C and not solve LPs from scratch.
All experiments were run on a 2014 Macbook pro running Matlab 2016. For pricing we used the LA routes
code of (Mandal et al. 2022) using the specific efficiencies in that code with edge weights generated using (7).

To solve the ILP we use the MATLAB “intlinprog” solver with default options and maximum run time
of 180 seconds.

6.3 Quantifying Tightening of the LP Relaxation

In this section we quantify the amount of tightening of the LP relaxation using a measure of “relative
increase”, which describes how much of the gap between the optimal integer solution and the lower bound
(the LP value) is closed by adding LA-SRI. We define the relative increase of a CRG solver parameterization
to be the improvement of the tightness of the solution induced by adding LA-SRI relative to the best known
integer solution. We define this term formally using the following terms.

• Ψ(Ω): We use Ψ(Ω) to denote the LP value prior to adding any LA-SRI. This is identical for all CRG
solvers f ∈ F .

• Ψf (Ω,∆): We use Ψf (Ω,∆) to denote the LP value for the CRG solver f after all LA-SRI are satisfied.

• UB: We use UBf to denote the upper bound generated by CRG solver f at termination of column/row
generation as done by solving the RMP as an ILP.

• UB: We use UB to denote the lowest cost upper bound generated using terms from any CRG solver
for a particular CVRP problem instance. Thus UB = minf∈F UB

f .

We now define relative increase below.

relative increase(f) =
UB −Ψf (Ω,∆)

UB −Ψ(Ω)
∀ UB > Ψ(Ω), f ∈ F (34)
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Observe that a relative increase(f) of 1 indicates that the CRG solver f makes the LP relaxation tight. A
relative increase of 0 indicates that CRG solver f does not tighten the LP relaxation using the LA-SRI.
All other relative increase values lie linearly in between [0, 1] depending on the LP value of CRG solver f .
Observe that (34) is not defined for the case where the LP relaxation is tight prior to adding any LA-SRI,
since the denominator (and the numerator) would be 0.

6.4 Experiments Conducted

We split our experiments into two categories. The first category, represented by plots in 1, shows the compar-
isons in time taken averaged over problem instances for various components for CRG solver parameterizations.
The second category, represented by plots in 2, shows the comparisons in relative increase for various CRG
solver parameterizations for CVRP problem instances.

On the top right of every figure, there is a box representing the parameter values for the CRG solver,
which is given by a distinct mark and color combination on the plot. Furthermore, every plot has a title
describing the type of comparison (either “timing” or “relative increase”) and the CVRP parameter values,
where the number of customers is denoted by N , and the capacity is denoted by d0. Results are described
conditioned on problem size (N, d0).

In plots shown by Fig 1, the y-axis provides the average time of any such timing category over the 10
CVRP problem instances used for a given CVRP parameterization; where the timing categories are written
below and associated with the x-axis.

• Total time: x=1 corresponds to the total optimization time taken, which is the sum of the terms below.

• Pricing time: x=2 corresponds to the time used in during pricing.

• RMP-LP time: x=3 corresponds to the time used for calls to the LP solver for Ψ+(ΩR,∆R, Ê, Ω̂)
generated during the RMP solver of Ψ+(ΩR,∆R) as described in Section 5.4.

• RMP-Shortest Path time: x=4 corresponds to the time used for finding shortest paths (and the asso-
ciated overhead) during the generation of Êl and Ω̂l as described in 5.4.

• Separation time: x=5 corresponds to the time used for identifying violated LA-SRI.

• ILP time: x=6 corresponds to the time required for solving the ILP to generate a feasible integer
solution.

• Pre-computation time: x=7 corresponds to the time required for pre-computing cp as described in Alg
1.

In plots shown by Fig 2, the x-axis is used to represent the problem instance for the CVRP parameter-
ization given by the title. The y-axis provides the relative increase of the solution given by a CRG solver’s
parameterization for the appropriate problem instance.There is also a blue circle in the same location of the
CRG solver parameterization which provides the greatest relative increase for a particular problem instance
and CVRP parameterization. It is important to note that some problem instances do not have associated
CRG solver values plotted; this is because we ignore problem instances where the CRG solver provides a
tight solution before introducing LA-SRI as the relative increase would be undefined.

6.5 Analysis

In this section we analyze the results for the experiments conducted in Section 6.4.
In results shown by Fig 1, we see for each CVRP parameterization that a large amount of optimization

time is spent on pricing, with the time spent on solving the LP during RMP becoming increasingly negligible
for CVRP parameterizations involving larger amounts of customers. It is important to note that although
the time taken to find the shortest path for stabilization does take significant time, the time can be reduced
by parallelizing the shortest path computation. Similarly, the time taken for separation to generate new
LA-SRI sets can be reduced by using parallelization. As a result, LA-SRI computation time will be even
more heavily dominated by other components of optimization (like pricing) in more sophisticated versions.

In results shown by 2, we see for each CVRP parametrization that the use of LA-SRI often improves the
tightness of the LP solver’s solution. However, we occasionally see that there are LA solver parameterizations
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Figure 1: In these plots, we describe the amount of time taken by each component of optimization for each
solver. The y-axis describes the average time taken in a procedure for a CRG solver parameterization. Each
data point describes the average time taken by a given CRG solver parameterization for a given component of
optimization on problems in our dataset for a given CVRP parameterization. The x-axis is used to represent
categories in time taken for the CRG solver. We use numbers to represent these categories on the x-axis, and
we explicitly define them here: Total x=1; Pricing x=2; RMP-LP x=3; RMP-Shortest Path x=4; Separation
x=5; ILP x=6; Preprocessing x=7.
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Figure 2: In these plots, we describe the relative solution tightness for each CRG solver parameterization.
The y axis describes the relative increase in the tightness by a given solver parameterization. Each data point
describes the “relative increase” in tightness for the CRG solver parameterization described by the legend
for a CVRP problem instance for a given CVRP parameterization. The relative increase is defined by (34).
Observe that a y-coordinate value of 1 for a given problem instance x and solver f indicates that the LP
relaxation became tight when LA-SRI are added for the problem instance x for solver f . We use the “best”
label in the legend to refer to the largest relative increase over all solvers f ∈ F . We also ignore problem
instances where the LP solver provides a tight solution before introducing LA-SRI.

25



where the use of LA-SRI does not improve the tightness of the LP solver’s solution. When looking at the
effectiveness of CRG solver parameterizations with the same LA-SRI option, we see that generally having
larger LA neighbor sets improves tightness, but there are exceptions to this rule as described in Section
4.4.The use of more LA-SRI in the optimization can lead to tighter solutions, but we observe that the LA-
SRI of option (a) often aligns with the tightest possible solution and is computationally fastest to solve
over.

Thus we conclude by stating that the use of LA-SRI tends not to significantly add to the time taken for
optimization, but often does tighten the corresponding LP relaxation.

7 Conclusions

In this document we adapt subset row inequalities (SRI) (Jepsen et al. 2008) to efficiently tighten the
expanded LP relaxation for vehicle routing problems, producing Local Area-subset row inequalities (LA-
SRI). We integrate LA-SRI alongside LA routes in a manner that ensures that the structure of the pricing
problem is not altered (Mandal et al. 2022). We demonstrate that our formulation with LA-SRI allows for
an accelerated solution based on Graph Generation/Principled Graph Management (GG/PGM) (Yarkony
et al. 2021, Yarkony and Regan 2022). We apply our approach to the Capacitated Vehicle Routing Problem
(CVRP), though our approach can be applied to other vehicle routing problems (Desrochers et al. 1992,
Costa et al. 2019). We demonstrate that the expanded LP relaxation is indeed significantly tightened using
LA-SRI and that computation of an optimal LP solution remains tractable.

We observe that for some problem instances, the number of LA neighbors alters the improvement in the
LP value. Furthermore, an increase in the size of LA neighbor sets does not monotonically tighten the LP.
However, larger LA neighbor sets do increase computation time. Thus, in future work we seek to develop
an algorithm that constructs the LA neighbor sets for customers in an efficient manner so as to maximally
tighten the LP. In this process, we would aim to maximally tighten the LP bound given that the number of
LA neighbors per customer does not exceed a user defined value (thus describing a computation budget).

In future work, we intend to explore the use of time windows in our formulations. This may involve
different LA neighbor settings depending on the time when the vehicle leaves a customer.

We also intend to use the original SRI in our formulation when they are violated by the LP solution but
the associated LA-SRI are not. In addition we can adapt other classes of valid inequalities to use with LA
arcs as we did SRI such as capacity inequalities (Archetti et al. 2011). These adaptations will be done to
allow the class of valid inequalities considered to easily fit into the existing pricing procedure, making the
addition of such valid inequalities computationally efficient.
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J. Desrosiers and M. E. Lübbecke. A primer in column generation. In G. Desaulniers, J. Desrosiers, and M. M.
Solomon, editors, Column Generation, pages 1–32. Springer, New York, NY, 2005.
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A Restricted Master Problem Equivalence

In this section we establish that Ψ+(ΩR,∆R) = Ψ(∪l∈ΩRΩl,∆R). We establish that in two parts. In Section
A.1 we demonstrate that Ψ+(ΩR,∆R) ≤ Ψ(∪l∈ΩRΩl,∆R). In Section A.2 we establish that Ψ+(ΩR,∆R) ≥
Ψ(∪l∈ΩRΩl,∆R). Since Ψ+(ΩR,∆R) ≤ Ψ(∪l∈ΩRΩl,∆R) and Ψ+(ΩR,∆R) ≥ Ψ(∪l∈ΩRΩl,∆R) then Ψ+(ΩR,∆R) =
Ψ(∪l∈ΩRΩl,∆R).

A.1 First Side of the Inequality

In this section we establish that Ψ+(ΩR,∆R) ≥ Ψ(∪l∈ΩRΩl,∆R). Consider the optimal solution to (31)
denoted (x, θ). Observe that if the x terms are zero valued then Ψ+(ΩR,∆R) = Ψ(ΩR,∆R) and Ψ(ΩR,∆R) ≥
Ψ(∪l∈ΩRΩl,∆R) by definition thus establishing the claim.

We now transform the solution x, θ to a solution to Ψ(∪l∈ΩRΩl,∆R) with identical cost to that of x, θ.
Each step of this process decreases the number of x terms with non-zero value. We now describe an individual
step of this process. If x is not zero valued by (31f), there must exist a path of non-zero valued xlij terms
starting at the source node (−1, d0) and ending at the sink node (−2, 0) for some l ∈ ΩR. Select any such
path on the graph associated with l, and let the edges on the path be denoted Êl. By (31e) for each ij ∈ Êl
(except the edge including the source) there must exist a p ∈ Ωly (for i = (u, d1),j = (v, d2), y = (u, v, d1−d2)
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s.t. xlp > 0. For each ij ∈ Êl (excluding the edge connected to the (−1, d0)) let pij be any such p ∈ Ωly
s.t. xlp > 0. Let l̂ denote a route corresponding to crossing all ij ∈ Êl and using the paths in pij as the

intermediate nodes. Note that l̂ is an elementary feasible route that lies in Ωl (but need not lie in ΩR) by
definition of El, Y l. Now consider the following altered solution given a tiny constant α > 0.

θl̂ ← θl̂ + α (35a)

xlij ← xlij − α ∀ij ∈ Êl (35b)

xlp ← xlp − α ∀p ∈ ∪ ij∈Êl
i 6=(−1,d0)

pij (35c)

Observe that the change in cost is zero by the definition of the cost of a route.Thus we need to establish that
a non-zero value α exists s.t. the change induced in (35) is feasible. Below we set α to the largest possible
value s.t. (35) does not alter non-negativity.

α← min{min
ij∈Êl

xlij , min
ij∈Êl

i 6=(−1,d0)

xlpij )} (36)

Since all x terms in (36) are positive then α is positive. Observe that this solution has fewer non-zero valued
x terms than prior to the update.

A.2 Second Side of the Inequality

In this section we establish that Ψ+(ΩR,∆R) ≥ Ψ(∪l∈ΩRΩl,∆R) using proof by contradiction. Consider
any solution producing optimal terms x, θ to Ψ(∪l∈ΩRΩl,∆R). If Ψ+(ΩR,∆R) ≥ Ψ(∪l∈ΩRΩl,∆R) then a
contradiction is created establishing the claim.

We construct as solution x (with zero valued θ) as follows to Ψ+(ΩR,∆R) with the same objective as
that of θ over Ψ(∪l∈ΩRΩl,∆R). Let ΩR2 = ∪l∈ΩRΩl. For any θl > 0 let Ql be any route in ΩR for which

l ∈ ΩQl (where ΩQl is simply Ωl̂ where l̂ = Ql) . We now construct x as follows.

xl̂ij ←
∑
l∈ΩR2

l̂=Ql

aijlθl ∀(ij ∈ E l̂, l̂ ∈ ΩR) (37a)

xl̂p ←
∑
l∈ΩR2

l̂=Ql

aplθl ∀p ∈ Ωl̂y, y ∈ Y l̂, l̂ ∈ ΩR (37b)

Observe that this solution is feasible and has cost identical to Ψ(∪l∈ΩRΩl,∆R) creating a contradiction hence
establishing the claim.
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