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Abstract: Estimating the safety effects of emerging or future technology based on expert acquisitions is challenging because the accu-
mulated judgment is at risk to be biased and imprecise. Therefore, this semiquantitative study is proposing and demonstrating an upgraded
bowtie analysis for safety effect assessments that can be performed without the need for expert acquisition. While bowtie analysis is com-
monly used in, for example, process engineering, it is novel in road traffic safety. Four crash case studies are completed using bowtie analysis,
letting the input parameters sequentially vary over the entire range of possible expert opinions. The results suggest that only proactive safety
measures estimated to decrease the probability of specific crash risk factors to at least “very improbable” can perceptibly decrease crash
probability. Further, the success probability of a reactive measure must be at least “moderately probable” to reduce the probability of a serious
or fatal crash by half or more. This upgraded bowtie approach allows the identification of (1) the sensitivity of the probability of a crash and its
consequences to expert judgment used in the bowtie model and (2) the necessary effectiveness of a chosen safety measure allowing adequate
changes in the probability of a crash and its consequences. DOI: 10.1061/AJRUA6.0000986. © 2018 American Society of Civil Engineers.
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Introduction

Cooperative intelligent transport systems (C-ITSs) are an emerging
technology in automotive and transportation engineering, and
expectations are high that their application will positively influence
road traffic safety, among other transport-related issues. As with
any other new or future technology, it is challenging to reliably
estimate the effects C-ITSs might have. Facing this uncertainty and
a lack of knowledge, research is often based on expert judgment.
Unfortunately, this form of data, its elicitation as well as its
interpretation, is prone to a large number of biases for various rea-
sons (e.g., Eddy 1982; Meyer and Booker 1991; Tetlock 2005;
Kirkebøen 2009; Kahneman 2011; Lees 2012; Morgan 2014).
For instance, Kassin et al. (2013) provided a comprehensive over-
view of recent research indicating not uncommon confirmation bias

among experts in various disciplines of forensic science. Confirma-
tion bias is a psychological phenomenon “by which people tend to
seek, perceive, interpret, and create new evidence in ways that
verify their preexisting beliefs” (Kassin et al. 2013, p.44). In expert
judgment in traffic safety, additional types of bias can be problem-
atic, such as hindsight bias and publication bias (Shinar 2017).
Hindsight bias, also called the “knew-it-all-along” effect, is the
tendency to increase the perceived likelihood of an event or its
outcome after the event has occurred. This bias embodies “beliefs
about events’ objective likelihoods, or subjective beliefs about
one’s own prediction abilities” (Roese and Vohs 2012, p.411)
and thus can be problematic in the reconstruction and causation
analysis of crashes (Dilich et al. 2006). Publication bias is the ten-
dency not to publish negative results, which seems likely to also
have an impact on the judgment of experts. Overviews of bias-
reducing strategies and techniques that aim for high accuracy
in expert judgment are provided in a number of publications
(e.g., Meyer and Booker 1991; Kirkebøen 2009; Morgan 2014).
For example, the use of explicit decision rules like the Bayes theo-
rem and the training for it, or the incorporation of specific group
decision processes, have been shown to reduce bias (e.g., Meyer
and Booker 1991; Rowe and Wright 2001; Surowiecki 2004). Plus,
in the absence of empirical data, the data accumulated in expert
acquisitions seem to be the only data on which research can pos-
sibly be based. However, not even the best expert can exactly fore-
cast the future performance of a specific novel system or the
system’s effects and their likelihood.

Another challenge comes in estimating the actual safety effects
of C-ITSs in terms of their influence on crashes. Apart from
implementing various C-ITSs with different levels of maturity in
many different ways, long periods of exposure to real traffic are
necessary to collect significant crash data. The majority of C-ITSs
are still in the testing phase. Even applications whose deployment
has already begun to a limited extent are far from providing enough
real traffic and crash data to estimate safety effects in a statistically
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reliable manner. Further, a substantial number of vehicles will have
to be equipped with C-ITSs before the anticipated and actual safety
effects will show. Due to this current lack of empirical data, re-
search has been based on “by proxy” or surrogate methods to assess
the effects of safety-related C-ITSs that are not yet implemented in
real traffic or have been implemented for a relatively short time.
By proxy or surrogate methods can be in-depth analyses of crash
reports (Virtanen et al. 2006), ex ante estimate studies based on,
say, crash data and statistics (Wilmink et al. 2008; Schirokoff
et al. 2012), traffic simulation modeling, driving simulator and field
test studies, or a combination of one or more of these (Harding et al.
2014). Ex ante estimate studies are based on in-depth crash inves-
tigations and analyze whether crashes or fatalities could have been
prevented if a specific safety measure had been used (e.g., Vaa et al.
2014). These studies usually involve numerous assumptions re-
garding vehicle fleet penetration rates and infrastructure coverage,
future trends, anticipated driver behavior, and functional and tech-
nological features of the studied system. Hardly any surrogate
methods allow practical and fast safety effect estimation of new
or future C-ITSs while allowing for the various factors associated
with crashes and their consequences. Moreover, surrogate methods
have one important disadvantage: crash risk is not measured di-
rectly. Instead, road safety is measured indirectly through perfor-
mance indicators such as speed or driver behavior. Although
their relation to or even correlation with crashes and their conse-
quences is known to some extent, the true effects of ITSs, particu-
larly on driver behavior, are still unknown, especially in the long
term.

Ehlers et al. (2017) proposed bowtie analysis (BTA) as a prob-
abilistic risk assessment method in road traffic safety to allow
estimation of the safety effects of C-ITSs before their introduction
or wide deployment. The authors consider bowtie analysis a valu-
able way to systematically and quantitatively assess the effects of
safety measures, such as safety-related C-ITSs. It has been shown
to be applicable when assessing changes in the probability of
crashes and their consequences due to proactive or reactive safety
measures. Proactive safety measures are here understood as
measures to reduce the probability of crashes, whereas reactive
safety measures are understood to reduce the probability of severe
crashes. The proposed bowtie analysis is based on exemplary ex-
pert estimates created and applied solely for demonstration. These
expert estimations were generated for the occurrence and success
probability of specific events as fuzzy sets using linguistic terms,
such as “highly improbable” and “moderately probable.”

This study is an extension of Ehlers et al. (2017) and attempts to
demonstrate an upgraded bowtie analysis by eliminating its
dependence on expert acquisitions and thereby subjective expert
opinions. Instead of involving experts, here bowtie analysis for four
case studies allows the input parameters to vary sequentially over
the entire range of possible expert opinions. The results for the case
studies are then compared with a base case, whose input parameters
ideally are based on existing knowledge and empirical evidence,
such as crash statistics, in-depth analyses, and meta-analyses. This
allows identification of (1) the sensitivity of the probability of a
crash and its consequences to expert judgment and (2) the neces-
sary safety effectiveness of a C-ITS allowing for adequate changes
in the probability of a crash and its consequences. Thereby a
method is created that aims to support public decision makers, such
as road authorities, in identifying the minimum safety effectiveness
required for emerging C-ITSs or other future safety measures
without the need for expert acquisitions.

C-ITSs are created by placing information and communica-
tion technologies at the roadside and inside vehicles in order to
collect, process, transfer, and deploy traffic- and safety-related data.

Wireless short-range radio communication between the road in-
frastructure, vehicles, and personal electronic devices allows ve-
hicle-to-vehicle communication (V2V) and vehicle-to-infrastructure
communication (V2I). These information and communication links
can be one way or two way. Cooperative vehicles (V2V) can “see”
one another through wireless high-speed communication in real
time and receive relevant data, such as position, speed, course, and
vehicle type. Compared with noncooperative vehicles and transport
systems, in cooperative vehicles information and warning timing
are improved. System users receive information and warnings in
real time, enhancing their situation awareness and providing them
with additional reaction time. In addition, V2V-systems can aug-
ment sensor-based intelligent transport systems, thereby improving
accuracy and support vehicle control (OECD 2003; Bayly et al.
2007; Harding et al. 2014).

The focus of this study is on safety-related C-ITSs that are
expected to directly improve road traffic safety by reducing
the probability of crashes and their consequences. Examples of
(potential) applications are intelligent speed adaptation, emer-
gency call systems, and various incident detection and warning
systems (local danger warning, red light violation warning, curve
speed warning, and the like). The “road traffic safety problem”—
that is, the number of injuries and fatalities resulting from
crashes—can be understood as a function of three variables:
exposure, crash risk, and injury consequence, as shown in Eq. (1)
(Nilsson 2004). In this equation, “accident” is synonymous with
“crash.”

Number of injured

¼ Exposure×

Risk�
Number of accidents

Exposure

�
×

Consequence�
Number of injured
Number of accidents

�

ð1Þ
Exposure to the risk of traffic accidents is expressed, for
example, in person or vehicle kilometers traveled. Accident rate
is understood as the risk of a traffic accident per unit of expo-
sure, often referred to as accident risk. The aforementioned
concept of risk in road traffic safety should not be confused with
the traditional definition: risk = probability × consequence,
which is normally used in risk assessment and so is used in this
paper.

The background to this study is covered by a short review of the
theories behind bowtie analysis and fuzzy set theory. Crash scenar-
ios, the base case, and additional assumptions taken from previous
research are described as well. The framework used in this study is
provided next, followed by descriptions of the four case studies.
Finally, the results for all bowtie analyses and their implications
are discussed and conclusions are presented.

Background

Bowtie Analysis and Fuzzy Set Theory

BTA is a recently proposed method in the field of road traffic safety
(Ehlers et al. 2017), but it is commonly used in probabilistic risk
assessment to qualitatively and quantitatively identify causes and
consequences of a risk or hazardous event [Dianous and Fiévez
2006; Duijm 2009; IEC/ISO 31010 (IEC 2009); Jacinto and
Silva 2010; Ferdous et al. 2012, 2013]. BTA combines two well-
established risk assessment techniques, fault tree analysis and event
tree analysis, but also includes safety barrier, or safety measure,
elements. Its focus is on evaluating the effectiveness of both
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proactive and reactive safety measures to reduce or prevent a risk or
to mitigate its consequences.

More specifically, a bowtie model and its diagram consist of the
following events and safety measures, which are applied in this
study:
• Causal (root) factors, here called basic events (BEs), initiating or

contributing to system malfunction;
• Malfunctions, errors, and other faults and causes, here called

intermediate events (IEs), causing the undesired critical event;
• Proactive countermeasures implemented, or planned, here

called proactive safety measures (PSMs);
• The critical event (CE);
• Reactive countermeasures implemented, or planned, here called

reactive safety measures (RSMs); and
• Consequences of the critical event, here called outcome events

(OEs).
In quantitative BTA, the probability of basic and intermediate

events acts as quantitative input together with the success prob-
ability of safety measures. The probability of the critical event as
well as the outcome events represents the quantitative output
and result of the analysis. In an ideal world, all input data would
be known with high accuracy. In real life, however, absent or
limited input data necessitate expert judgment, which tends to
be subjective and possibly imprecise. Ferdous et al. (2012) pre-
sented a framework for handling both types of uncertainty in
BTA using fuzzy set theory, which was adapted and applied in
this study.

Fuzzy set theory has been proven efficient in handling subjec-
tive, imprecise information and noncrisp data such as linguistic ex-
pert judgment (e.g., Zadeh 1965; Bouchon-Meunier et al. 1999;
Ayyub and Klir 2006; Markowski et al. 2009; Ferdous et al.
2012). For example, experts may use the term set for probability
to estimate the probability of events and the success probability of
safety measures, as in this study: highly improbable (HI), very im-
probable (VI), improbable (I), moderately probable (MP), probable
(P), very probable (VP), or highly probable (HP). Such terms can
then be converted to fuzzy numbers, such as triangular fuzzy
numbers (TFNs), x ∈ p, to represent the membership functions
(Bouchon-Meunier et al. 1999; Ayyub and Klir 2006). Using a
numerical relationship, these describe the degree to which a number
belongs to a set (Fig. 1). Each TFN P is then described as a vector,
pL, pm, or pU, that is represented by the lower boundary, the most

likely value (i.e., at the mode), and the upper boundary of P. Multi-
ple and possibly inconsistent expert knowledge can be aggregated by
the weighted average method (e.g., Ayyub and Klir 2006). After
the input variables are assigned probabilities using TFNs, fuzzy
arithmetic operations can be used to perform the bowtie analysis
(Ferdous et al. 2012). These fuzzy arithmetic operations and equa-
tions are based on traditional equations from fault tree and event tree
analysis, such as IEC 61025 (IEC 2006) and IEC 62502 (IEC 2010).

Crash Assumptions and Crash Scenarios

Although crashes are rare and random, in this study they are as-
sumed to occur; that is, their probability is close to one. Thus,
one crash and what is known as its causal chain are chosen because
of the illustrative and demonstrative purpose of this study. This
approach should not be confused with using actual probability
or frequency of a specific crash type, which is based on crash data.

Ehlers et al. (2017) chose three illustrative crash scenarios,
which were used in the case studies here. The following assump-
tions, valid for all of them, were made for a crash assumed to occur
at a road section. The critical event was defined as a run-off-road
collision of a single passenger car. More specifically, a single pas-
senger car with one vehicle occupant is leaving the roadway at a
section where a rock cut is located at the roadside. The speed limit
for this section is 80 km=h. It is presumed that the vehicle occu-
pant, the driver, wears a seat belt and that the vehicle collides with a
guardrail meant to shield the rock cut.

The case studies were based on three safety measures, which can
be distinguished as proactive or reactive in relation to the crash
(Fig. 2). The first crash scenario was understood as the baseline,
with two traditional safety measures. The other two scenarios were
extensions of the baseline, with either a proactive or a reactive
cooperative safety measure in addition to the traditional measures.
Several basic and intermediate events, listed in Table 1, were
chosen as parameters having the potential to initiate and cause
the crash. That means that at least one basic event was assumed
to initiate the crash, possibly in combination with at least one other
basic event. The outcome events were defined using different injury
severities classified according to the Maximum Abbreviated Injury
Scale (MAIS 1–6). For example, MAIS 1 is a minor injury that
requires short-term medical treatment such as stiches, whereas
MAIS 6 is a fatal injury.

Fig. 1. Linguistic variables at fuzzy scale. (Reprinted from Accident Analysis and Prevention, Vol. 99, Part A, U. C. Ehlers, E. O. Ryeng,
E. McCormack, F. Khan, and S. Ehlers, “Assessing the safety effects of cooperative intelligent transport systems: A bowtie analysis approach,”
pp. 125-141, © 2017, with permission from Elsevier.)
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Base Case and Its Bowtie Analysis

Ehlers et al. (2017) performed bowtie analyses for five case studies.
The initial case study, and thus the initial bowtie analysis (BTA1),
should be understood as the base case with which the results from
this study are compared.

The base case was the baseline scenario with the two traditional
and noncooperative safety measures, seat belt and guardrail. Fig. 3
shows the bowtie diagram developed for the base case and BTA1.
The proactive safety measure (PSM) was added in BTA2 and was
not part of BTA1. Short descriptions of BTA1’s input and output
events are provided in Table 2. The crash outcomes, and the result-
ing injury severities, were chosen based on the crash scenario and
its underlying assumptions: that the driver sustains injuries due to
the sudden and significant change in velocity given the speed limit
of 80 km=h.

The probabilities of the input events for the quantitative bowtie
analysis should be based on existing knowledge and empirical data.
For example, the success probabilities for the reactive safety mea-
sures seat belt and guardrail were taken from Elvik et al. (2009) as
fuzzy numbers: the probability of success for the driver’s seat belt
in a passenger car was (0.230, 0.280, 0.330); that for a guardrail
was (0.365, 0.455, 0.530). However, it is important that the prob-
abilities of the basic events were generated as example expert data
because of the study’s purpose to demonstrate bowtie analysis. In
future research, it should be possible to use the actual approximate
probability of the most representative basic events through crash
statistics, thoroughly considering crash type, in-depth crash study
results, and more. Ideally, the probabilities of the basic events
would be chosen from an existing crash causation assessment
study. Table 3 provides the generated occurrence probabilities
and the chosen success probabilities of the input events at fuzzy
scale.

Based on these input probabilities, the fuzzy based probabil-
ities of the critical event (CE) and the different crash outcome
events (OEs) were calculated using fuzzy arithmetic for bowtie
analysis (Table 4). The calculated probability of the critical
event was (0.839–0.998). Further, a crash with a critical or fatal
injury (MAIS 5–6) was the most likely outcome calculated be-
cause a combined failure of the two traditional safety measures,
seat belt and guardrail, whose success probabilities were
judged to be relatively high, would have had serious consequen-
ces. Thus, the success of a safety measure means that it fulfills
its tasks and performs as planned, under the assumption that
it is provided and used as intended. The probability of the other
crash outcomes was found to decrease with decreasing injury
severity.

Seat belt (RSM1) and guardrail (RSM2)

Seat belt (RSM1), guardrail (RSM2) and warning system (PSM1)

Seat belt (RSM1), guardrail (RSM2) and eCall system (RSM3)

(a)

(b)

(c)

Fig. 2. (a) Scenario 1: baseline with two traditional reactive safety
measures (RSM1 and RSM2); (b) Scenario 2: addition of one coopera-
tive proactive safety measure (PSM1); and (c) Scenario 3: addition of
one cooperative reactive safety measure (RSM3). (Adapted from Ehlers
et al. 2017.)

Table 1. Basic and intermediate events used in all case studies

Basic Intermediate

BE1: Intoxicated driving IE1: Driver error
BE2: Speeding; insufficient speed adaptation
BE3: Inattention
BE4: Fatigue, falling asleep
BE5: Avoiding vehicle, bicycle, pedestrian, animal, object on driveway
BE6: Impaired visibility (in-vehicle) IE2: Vehicle malfunction
BE7: Steering defect
BE8: Tire defect
BE9: Brake defect
BE10: Suspension defect
BE11: Antilock braking system defect
BE12: Electronic stability control defect
BE13: Insecure load
BE14: Dangerous road geometry design features IE3: Infrastructure malfunction or environmental anomaly
BE15: Insufficient road signage or marking
BE16: Poor road surface
BE17: Reduced road surface friction
BE18: Impaired visibility conditions (external)

Source: Data from Ehlers et al. (2017).
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Framework Used in This Study

In this study, a framework for bowtie analysis as a conceptual
approach to evaluating the safety effects of C-ITSs (Fig. 4) was
adapted from Ferdous et al. (2012) and Ehlers et al. (2017). It
covered the full range of expert opinions on event probability.
The quantitative bowtie analysis included a fuzzy approach with
the following steps:

1. Generation of full-range expert opinion in the form of linguistic
terms covering the entire range of event probability (highly im-
probable to highly probable) to define variations in probability
of the input events due to a new safety measure.

2. Transformation of linguistic terms into triangular fuzzy
numbers.

3. Aggregation of fuzzy numbers in case of opinions from multiple
experts.

4. Determination of the probability of the critical event and out-
come events through modified fuzzy arithmetic operations.
Probability assessments based on bowtie analysis using expert

knowledge usually provide an approximate quantification of the
likelihood of a critical event and its outcome events without con-
sidering the full spectrum of possible expert judgments. For exam-
ple, if an expert makes a judgment in opposition to the judgment
made by another expert, the judgment of all experts is aggregated
and averaged using, for example, the weighted average method.
Furthermore, although a fuzzy approach allows the handling of
subjective and imprecise expert judgments to a certain extent, it
cannot cover all parameter uncertainties in the estimated input data.
Therefore, this study used a systematic approach, where the param-
eters of the input data were simulated to sequentially vary over the

Fig. 3. Bowtie diagram for BTA1 and BTA2 with an additional cooperative proactive safety measure (PSM1). (Reprinted from Accident Analysis and
Prevention, Vol. 99, Part A, U. C. Ehlers, E. O. Ryeng, E. McCormack, F. Khan, and S. Ehlers, “Assessing the safety effects of cooperative intelligent
transport systems: A bowtie analysis approach,” pp. 125-141, © 2017, with permission from Elsevier.)

Table 2. Basic events, reactive safety measures, and outcome events for
BTA1

Category Code Description

Basic event BE1–BE18 See Table 1
Safety measure RSM1 Seatbelt

RSM2 Guardrail
Outcome event OE1base MAIS 1–3: minor to serious

OE2base MAIS 3–5: serious to critical
OE3base MAIS 4–6: severe to fatal
OE4base MAIS 5–6: critical or fatal

Source: Data from Ehlers et al. (2017).
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entire range of event probabilities—from highly improbable to
highly probable in linguistic terms. Thereby, the effect of changing
input parameters on the analysis results could be studied and evalu-
ated. This approach provided the lower and upper boundaries of
the occurrence probability of a crash and its outcome events
(consequences) when the parameters of the input events varied over
the entire range of probability.

Case Studies 2 and 3: Simulated Variation in Expert
Judgment on the Probability of Basic Events: Fault
Tree

Although the input data of the base case should have been, and
partially were, based on empirical knowledge, the additional four
case studies were based on full-range expert opinions. In other
words, instead of a specific and thus limited spectrum of expert
judgment, the probability of all input events was simulated to se-
quentially vary from highly improbable to highly probable. This
means that no data from expert acquisitions were used. Finally,
the probability of the output events in the base case was compared
with that in the other study cases, allowing a safety effect assess-
ment of the new safety measures in addition to the traditional
measures.

In Case Study 2 (BTA2), a cooperative proactive safety measure
was applied in addition to the two traditional measures, as visual-
ized in Crash Scenario 2. A local danger warning system was
chosen as an example and was assumed to positively influence
the probability of 6 of the 18 basic events: three driver-related
and three road-related (Fig. 3). The occurrence probability of
the other 12 basic events remained unchanged. A short description
of the input and output events in this crash scenario is provided in
Table 5. Theoretically, experts can be asked the following question
to obtain their opinions on the effect of the chosen C-ITS on the
probability of the 6 basic events: “Given a successful application of
the stated proactive safety measure, how probable (likely) is it that
this specific basic event, possibly in combination with other basic
events, still occurs and initiates the crash?” However, instead of
experts, linguistic terms now described the occurrence probability
of the 6 basic events, covering the entire probability range, so the
probability of the 6 basic events varied. The probability of the other
basic events and the success probability of the reactive safety
measures remained the same as in the base case (BTA1).

Fig. 5 shows the results for BTA2. The vertical lines represent
the triangular fuzzy numbers (TFNs) of the likelihood of the event
in question. The upper end of each line represents the upper boun-
dary value of the TFN (the right value), and the lower end repre-
sents the lower boundary value (the left value). The actual data
point, between the lower and upper boundary values, is the most
likely probability value (i.e., the TFN modal value). The dotted
horizontal lines represent the probabilities of the critical event
(CE) and outcome events (OEs) in BTA1, with which the new prob-
abilities in BTA2 are compared. The results show that the occur-
rence probability for all output events starts to decrease when the
occurrence probability of the 6 basic events is estimated to be at
least improbable. Further, a proactive safety measure that is esti-
mated to increase the occurrence probability of the 6 basic events—
compared with the base case—tends to slightly increase the
likelihood of a crash and its outcome events.

In Case Study 3 (BTA3), linguistic terms were assigned to the
probabilities of all basic events so that the probabilities could be
simulated to vary from highly improbable to highly probable. This
was supposed to simulate a full range of expert opinion on the ef-
fect of a cooperative proactive safety measure. In addition, the ef-
fect that varying probability of basic events has on quantitative
bowtie analysis could be studied. Again, the success probability
of the two traditional reactive safety measures, seat belt and guard-
rail, remained the same as in the base case (BTA1). Fig. 6 shows the
results for BTA3, which reflect the results for BTA2. The proba-
bility of the critical event becomes 1 when the probability of all
basic events is estimated as at least moderate. The results show that
the likelihood of a crash and its outcome events decreases with the
decreasing probability of the basic events. Further, a crash is almost
unavoidable even if the probability of all basic events is estimated
as very improbable. Only if the occurrence of all basic events is

Table 4. Calculated fuzzy probabilities for BTA1 output events

Reference Description

Likelihood

Lower bound (pL) Modal value (pm) Upper bound (pU)

CE Crash 0.839 0.977 0.998
OE1base Minor to serious injury 0.070 0.124 0.174
OE2base Serious to critical injury 0.091 0.149 0.209
OE3base Severe to fatal injury 0.205 0.320 0.407
OE4base Critical or fatal injury 0.264 0.383 0.488

Source: Data from Ehlers et al. (2017).
Note: CE = critical event; and OExbase = outcome event from base case.

Table 3. Generated input data and literature knowledge at fuzzy scale for
BTA1input events

Event State (F or S) TFN (pL, pm, pU)

BE1 F (0.150, 0.275, 0.400)
BE2 F (0.250, 0.388, 0.525)
BE3 F (0.098, 0.199, 0.300)
BE4 F (0.098, 0.199, 0.300)
BE5 F (0.150, 0.275, 0.400)
BE6 F (0.023, 0.074, 0.125)
BE7 F (0.000, 0.025, 0.050)
BE8 F (0.098, 0.199, 0.300)
BE9 F (0.023, 0.074, 0.125)
BE10 F (0.023, 0.074, 0.125)
BE11 F (0.000, 0.025, 0.050)
BE12 F (0.000, 0.025, 0.050)
BE13 F (0.023, 0.074, 0.125)
BE14 F (0.250, 0.388, 0.525)
BE15 F (0.098, 0.199, 0.300)
BE16 F (0.150, 0.275, 0.400)
BE17 F (0.150, 0.275, 0.400)
BE18 F (0.098, 0.199, 0.300)
RSM1 S (0.230, 0.280, 0.330)
RSM2 S (0.365, 0.455, 0.530)

Source: Data from Ehlers et al. (2017).
Note: BE = basic event; RSM = reactive safety measure; F = failure;
S = success; and TFN = triangular fuzzy number.
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estimated as highly improbable can the crash probability be re-
duced by more than half. The reason for this lies in the assumption
made for the bowtie analyses: at least one factor occurs that initiates
or contributes to a malfunction of the system leading to a crash. For
example, the probability of the crash would be close to 1—even if
the probability of all basic events except one were estimated as
highly improbable—given that this one basic event would be esti-
mated as highly probable. Again, the probability of a crash de-
creases with the decreasing probability of that one basic event.

An additional effect is found regarding the number of basic
events and thus crash risk factors. If the number is reduced, the
calculated likelihood of a crash is also reduced, which reflects
the arithmetic in the bowtie model.

Case Studies 4 and 5: Simulated Variation in Expert
Judgment on the Success Probability of the
Reactive Safety Measures: Event Tree

In Case Study 4 (BTA4), variable linguistic terms were assigned to
the success probability of the two traditional reactive safety mea-
sures, seat belt and guardrail. Although the actual success proba-
bility of these measures was taken from a credible report (Elvik
et al. 2009), its effect on the output data when varied is of interest.
The probability of all basic events remained the same as in the base
case (BTA1), as did the bowtie diagram. The results show that, with
highly ineffective reactive safety measures, a crash with a critical or
fatal injury (OE4) is extremely likely (Fig. 7). In contrast, with
highly effective safety measures, the outcome tends to be a minor
to serious injury (OE1). This means that highly ineffective reactive
safety measures worsen the outcome and vice versa. The probabil-
ity of a crash producing a minor to serious injury increases with a
decreasing probability of a crash producing a critical or fatal injury.
If the success probability of all reactive safety measures were esti-
mated as moderately probable, the probability would be the same
for all outcome events.

In Case Study 5 (BTA5), the varying linguistic terms were as-
signed only to the estimated success probability of the cooperative
reactive safety measure as illustrated in Crash Scenario 3. These
linguistic terms were assumed to be expert opinions in response
to the following question: “Given a crash in the defined settings,
how probable (likely) is the success of the applied novel reactive
safety measure?” Again, expert opinion was simulated to vary over

Basic event
occurrence probability: 

influenced by safety 
measure 

Safety measure 
success probability:

full-range of possible 
expert opinions

Fault Tree 
(FT) model

Event Tree 
(ET) model

Bowtie
model

Fuzzy set theory

Handling of two types 
of data uncertainty:
- subjective
- imprecise

More than one 
expert

No

Yes

- weighted average
method

Bowtie analysis

Determination of

- probability of critical event
- probability of outcome events

Quantitative analysis

Qualitative analysis

Fuzzy number 
aggregation

Fig. 4. Framework for bowtie analysis handling data uncertainty under full-range expert opinion. (Reprinted from Accident Analysis and Prevention,
Vol. 99, Part A, U. C. Ehlers, E. O. Ryeng, E. McCormack, F. Khan, and S. Ehlers, “Assessing the safety effects of cooperative intelligent transport
systems: A bowtie analysis approach,” pp. 125-141, © 2017, with permission from Elsevier.)

Table 5. Basic events, reactive safety measures, and outcome events for
additional cooperative system as proactive safety measure in BTA2

Category Code Description

Basic event BE1–BE18 See Table 1
Safety measure PSM1 Local danger warning system

RSM1 Seat belt
RSM2 Guardrail

Outcome event OE1 MAIS 1–3: minor to serious
OE2 MAIS 3–5: serious to critical
OE3 MAIS 4–6: severe to fatal
OE4 MAIS 5–6: critical or fatal

Source: Data from Ehlers et al. (2017).
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the entire range of success probability. Chosen as a cooperative re-
active measure was the emergency call system eCall, which auto-
matically notifies the nearest emergency center immediately after
the vehicle sensors detect a crash. Saving emergency response time
and thus possibly lives is expected if all new cars are equipped with
the eCall technology (EC 2016). The probability of the other input
events remained the same as in BTA1. Fig. 8 shows the event tree

for BTA5 with the cooperative eCall system as an additional reac-
tive safety measure. Table 6 lists all events and measures involved.
It was assumed that the eCall system affected neither the least nor
the worst crash outcome.

Fig. 9 shows the results for BTA5 compared with the base case
in BTA1. Fig. 10 shows the results for Outcome Events OE2–OE5
in detail. The probabilities of BTA1 are again plotted as horizontal

(a)

(b)

(c)

Fig. 5. Likelihood in BTA2 of (a) critical event (CE); (b) Outcome Events OE1 and OE2; and (c) Outcome Events OE3 and OE4 with simultaneously
varying likelihood of the six basic events affected by the cooperative proactive safety measure in comparison with the base case.
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dotted lines. The sum of the probabilities of OE2 and OE3 is equiv-
alent to the probability of OE2 in the base case (OE2base), as shown
in Fig. 10(a). This is the result of the formulae used in the event tree
analysis (the right side of the bowtie diagram) and the assumption
that the least and worst outcome are not affected by the eCall sys-
tem. The same is true for the sum of OE4 and OE5, being equiv-
alent to the probability of OE3 in the base case (OE3base), as shown
in Fig. 10(b). The probability of the CE remains unchanged. The
same applies to the probability of OE1 (minor to serious injury;
MAIS 1–3), and OE6 (critical or fatal injury; MAIS 5–6). Thus,
OE6 was the same as OE4 from the base case (OE4base). However,
the probability of the other outcomes changed depending on the
estimated success probability of eCall. Both the probability of a

serious to critical injury (OE3; formerly OE2base) and the probabil-
ity of a severe to fatal injury (OE5; formerly OE3base) decrease with
the increasing success likelihood of the additional safety measure.
The success probability of the eCall system needs to be judged as at
least “moderately probable” to reduce the probability of a serious to
critical injury crash, as well as the probability of a severe to fatal
injury crash, by half or more compared with the base case.

Discussion

There is a need for methods that assess the direct safety effects
of emerging or future cooperative intelligent transport systems

Fig. 6. Probability of critical event with varying likelihood of all basic events in BTA3.

Fig. 7. Likelihood of critical event (CE) and outcome events (OEs) in BTA4 with varying success probability of the traditional reactive safety
measures seat belt and guardrail.
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(C-ITSs) in automotive or transportation engineering. To meet this
need, Ehlers et al. (2017) proposed bowtie analysis. Bowtie analy-
sis, which simulates varying expert judgment as proposed and
demonstrated in this paper, allows estimating the safety effect of
a specific safety measure independently of expert judgment. In
other words, it simulates the entire range of possible expert answers
(i.e., probabilities) by altering the input data that usually come from
expert acquisitions, which are at risk for of bias and uncertainty.
Fig. 11 is a flowchart of the proposed approach.

Under the assumptions in this study, the results for the second
and third bowtie analyses (i.e., simulated variation in expert opin-
ion on the probability of the basic events) suggest that (1) only pro-
active C-ITSs that decrease the probability of specific crash risk
factors (those that represent the crash type in question) to at least
very improbable can perceptibly decrease the probability of a crash.

Otherwise, the crash is highly likely. Obviously, an ideal proactive
C-ITS would decrease the probability of all basic events, and thus
crash risk factors, to highly improbable, meaning that a crash is
very likely to be prevented given (1) a proactive safety measure
that informs and warns the driver about all potential driving errors,
vehicle or infrastructure malfunctions, and environmental anoma-
lies; and (2) prompt and adequate driver reaction to the received
warning.

The bowtie model’s arithmetic yields a decrease in the calcu-
lated likelihood of a crash with a decreasing number of basic
events. This may suggest careful deliberation on whether highly
improbable basic events need to be included in the final fault tree
model. When two similar proactive C-ITSs are to be compared, the
more basic events positively influenced, the better. This means that
the system that most decreases the probability of the basic events
qualitatively and quantitatively will have the greatest safety effects.

The results for the fourth and fifth bowtie analyses (i.e., simu-
lated variation in expert opinion on the success probability of the
reactive safety measure) indicate that, under the assumptions in this
study, the probability of a serious to critical injury crash and that of
a severe to fatal injury crash can be reduced by half or more if the
success probability of the chosen reactive C-ITS eCall is estimated
as at least moderately probable. In fact, any additional reactive
safety measure positively affects crash outcomes because it yields
an even more fragmented classification of injury severity, given that
it works as assumed in the qualitative consequence analysis.

Bowtie analysis has a limitation that is apparent when applied to
transportation safety: the assumption of statistical independence
between input factors. In real life, interdependence and correlations
between crash risk factors are evident. Further, crash risk factors
are known to influence crash outcomes. In bowtie analysis, the

Fig. 8. Event tree for cooperative system as reactive safety measure in BTA5. (Reprinted from Accident Analysis and Prevention, Vol. 99,
Part A, U. C. Ehlers, E. O. Ryeng, E. McCormack, F. Khan, and S. Ehlers, “Assessing the safety effects of cooperative intelligent transport systems:
A bowtie analysis approach,” pp. 125-141, © 2017, with permission from Elsevier.)

Table 6. Basic events, reactive safety measures, and outcome events for
eCall system as additional reactive safety measure in BTA5

Category Code Description

Basic event BE1–BE18 See Table 1
Safety measure RSM1 Seat belt

RSM2 Guardrail
RSM3 eCall

Outcome event OE1 MAIS 1-3: minor to serious
OE2 MAIS 3-4: serious or severe
OE3 MAIS 3-5: serous to critical
OE4 MAIS 4-5: severe or critical
OE5 MAIS 4-6: severe to fatal
OE6 MAIS 5-6: critical or fatal

Source: Data from Ehlers et al. (2017).
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(a)

(b)

Fig. 10. Likelihood in BTA5 of (a) Outcome Events OE2 and OE3; and (b) Outcome Events OE4 and OE5 with varying estimated success probability
of eCall in comparison with the base case. OEx base = outcome event from base case.

Fig. 9. Likelihood of critical event (CE) and outcome events (OEs) in BTA5 with varying estimated success probability of cooperative
reactive safety measure eCall in comparison with the base case. CE base = critical event from base case; OEx base = outcome event from
base case.
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probability of the risk factors (i.e., basic events) is considered only
in the calculation of critical event probability, not in the calculation
of outcome events. Moreover, direct effects of emerging technol-
ogies on driver behavior are still unknown and thus involve
high uncertainty. For these reasons, bowtie analysis may be criti-
cized as oversimplifying dynamic and complex crash behavior and
crash consequences. However, models typically simplify reality in
order to allow problem solving, which naturally includes model
uncertainty.

Other limitations and uncertainties may concern the empirical
crash data used in the bowtie model for safety effect estimation.
These may involve variations and incomplete information.
Evidently, an increase in input data accuracy strongly improves
the quality of model output—the safety effect estimations. Baye-
sian analyses are one way to model these uncertainties. Through
automatized big data collection, it might be possible to precisely
quantify the probability of all crash risk factors in the future, taking
into account their interrelations and variations. Bowtie analysis
can be used for this purpose, as it allows for dynamic updates
of input parameters given new evidence (e.g., Ferdous et al.
2012; Paltrinieri et al. 2013). Overall, crash models can be expected
to become more accurate and should eventually allow the modeling
of dynamic processes and interdependencies, including human
behavior.

Conclusion

This paper demonstrated an upgraded bowtie approach in a semi-
quantitative assessment of emerging safety measures for trans-
portation safety. Four case studies using bowtie analyses were
described whose input parameters sequentially varied over the en-
tire range of possible expert answers. These results were compared

with the results for an initial base case study whose input data were
partially generated as examples and partially based on existing
knowledge. This allowed the identification of (1) the sensitivity
of the probability of a crash and its consequences (output data)
to the entire spectrum of expert judgment used in the bowtie model
and (2) the necessary safety effectiveness of a chosen C-ITS
allowing adequate changes in the probability of a crash and its
consequences.

Whereas the bowtie approach has the limitation of assuming
independence between input parameters, it allows for a practical
assessment of C-ITSs and their safety effects necessary to achieve
adequate changes in the probability of crashes and their consequen-
ces. Using this method, decision makers such as road authorities
can identify the minimum safety effectiveness to be achieved by
C-ITSs or other future safety measures, and they can then choose
the best investments to support safety. The upgraded bowtie ap-
proach demonstrated in this study allows assessments without ex-
pert data acquisitions, which are usually at risk for uncertainty and
bias. Yet it makes possible purposeful communication and interpre-
tation of the potential effects of safety measures. Future research
may address the limitations of bowtie analysis such as the assumed
independence among input events. For example, a dependency
coefficient can explore different kinds of interdependence. An addi-
tional sensitivity analysis can determine the most significant con-
tributing input events for the output events. This may support the
final selection of basic events for the bowtie model.
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